一种用于应用流量分类的自动化深度学习模型生成方法及系统

    公开(公告)号:CN117633584A

    公开(公告)日:2024-03-01

    申请号:CN202311529529.8

    申请日:2023-11-16

    Abstract: 本发明公开了一种用于应用流量分类的自动化深度学习模型生成方法及系统,包含应用流量预处理阶段,应用流量分类模型架构搜索阶段,应用流量分类模型选择阶段。预处理阶段包括:原始应用流量样本重组与IP混淆;获得包字节序列;对包字节序列转换为矢量矩阵。搜索阶段包含:控制器和隐藏状态表初始化;正常与缩减单元结构搜索;链接单元形成分类模型;模型训练与测试;控制器更新;判断是否达到终止条件。选择阶段包括:模型性能排序;本发明使用强化学习方法,减少了设计过程的主观性和人为偏好的影响,可以实现自动生成对应用流量进行分类的深度学习模型,提高了模型的表达能力和分类性能,实现了更高的准确性与效率。

Patent Agency Ranking