-
公开(公告)号:CN110210237A
公开(公告)日:2019-09-06
申请号:CN201910459548.5
申请日:2019-05-29
Applicant: 北京工业大学
Abstract: 本发明公开了基于云雾协同的工业互联网敏感数据保护方法,本方法设计出一个工业敏感数据保护模型。对于工业延时敏感的数据,设计了一种基于Adaboost和本地差分隐私的数据保护方案,在确保数据可用性的基础上保护了敏感数据;对于工业非延时敏感、以云存储为主的数据,设计了一种基于AES加密和Reed-Solomon编码的数据保护方案。本方法在本地采用分布式存储,并且对RS加了相应的限制条件,不仅解决了本地设备存储压力大和本地设备故障导致数据不能恢复的问题,而且提高了编码和解码效率,降低运算成本。
-
公开(公告)号:CN113852605A
公开(公告)日:2021-12-28
申请号:CN202110999657.3
申请日:2021-08-29
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于关系推理的协议格式自动化推断方法及系统。该方法包括三个阶段,分别为粗粒度结构生成阶段、关系学习阶段和细粒度结构生成阶段:粗粒度结构生成阶段包括:对原始网络流量进行预处理;对预处理后的有效负载集合生成频率字典;根据频率字典产生粗粒度结构;关系学习阶段包括:对有效负载的特征进行提取;对负载粗粒度结构产生对应的问题集和答案集;利用问题和答案推理有效负载特征中各n‑gram间逻辑关系,构建字段关系模型;细粒度结构生成阶段包括:根据关系学习阶段得到的字段关系模型,将其映射到粗粒度结构中;根据映射关系推断出负载的格式。本发明在TCP/UDP负载中从变长字段间提取精确的协议格式,提取方法效率高、鲁棒性强。
-
公开(公告)号:CN113852605B
公开(公告)日:2023-09-22
申请号:CN202110999657.3
申请日:2021-08-29
Applicant: 北京工业大学
IPC: H04L69/06 , G06N3/09 , G06N3/0464 , H04L69/16
Abstract: 本发明公开了一种基于关系推理的协议格式自动化推断方法及系统。该方法包括三个阶段,分别为粗粒度结构生成阶段、关系学习阶段和细粒度结构生成阶段:粗粒度结构生成阶段包括:对原始网络流量进行预处理;对预处理后的有效负载集合生成频率字典;根据频率字典产生粗粒度结构;关系学习阶段包括:对有效负载的特征进行提取;对负载粗粒度结构产生对应的问题集和答案集;利用问题和答案推理有效负载特征中各n‑gram间逻辑关系,构建字段关系模型;细粒度结构生成阶段包括:根据关系学习阶段得到的字段关系模型,将其映射到粗粒度结构中;根据映射关系推断出负载的格式。本发明在TCP/UDP负载中从变长字段间提取精确的协议格式,提取方法效率高、鲁棒性强。
-
公开(公告)号:CN110210237B
公开(公告)日:2021-02-26
申请号:CN201910459548.5
申请日:2019-05-29
Applicant: 北京工业大学
Abstract: 本发明公开了基于云雾协同的工业互联网敏感数据保护方法,本方法设计出一个工业敏感数据保护模型。对于工业延时敏感的数据,设计了一种基于Adaboost和本地差分隐私的数据保护方案,在确保数据可用性的基础上保护了敏感数据;对于工业非延时敏感、以云存储为主的数据,设计了一种基于AES加密和Reed‑Solomon编码的数据保护方案。本方法在本地采用分布式存储,并且对RS加了相应的限制条件,不仅解决了本地设备存储压力大和本地设备故障导致数据不能恢复的问题,而且提高了编码和解码效率,降低运算成本。
-
-
-