联邦学习中基于数据增强的隐私保护方法

    公开(公告)号:CN119622816A

    公开(公告)日:2025-03-14

    申请号:CN202411844170.8

    申请日:2024-12-15

    Abstract: 本发明公开了联邦学习中基于数据增强的隐私保护方法,属于联邦学习隐私保护的领域,该方法的步骤如下:首先参与联邦学习训练的客户端在本地训练前先使用选择好数据增强方法对数据集进行处理;接着中央服务器初始化所有参数并下发至各个客户端开始训练;每轮参与训练的客户端获取全局模型参数,训练每个批次后计算梯度,更新参数,对参数裁剪并添加差分扰动噪声;每轮结束之后服务器聚合、更新全局参数,广播给客户端,如此循环至模型收敛。本方法主要改进联邦学习现有的基于差分隐私的隐私保护方法,加入数据增强方法使其更好地平衡模型可用性和隐私保护能力。其中,数据增强方法包括SaliencyMix、基本数据增强策略、SaliencyMix与基本数据增强策略相结合等。

    基于联邦学习的医院隐私数据加噪与优化保护方法

    公开(公告)号:CN117493877A

    公开(公告)日:2024-02-02

    申请号:CN202311297708.3

    申请日:2023-10-09

    Abstract: 本发明公开了基于联邦学习的医院隐私数据加噪与优化保护方法,该方法的步骤如下:医院客户端指定的中央服务器初始化并广播发送全局模型至客户端;客户端在本地使用私有数据集训练本地模型并得到模型梯度数据;客户端对模型梯度数据进行裁剪加噪保护处理;客户端使用噪声优化算法对加噪后的模型梯度参数进行方向优化;客户端将优化后的模型梯度参数上传至服务器;中央服务器对模型梯度参数进行联邦聚合;生成最终经过优化噪声梯度算法保护的模型。本方法在使用传统联邦学习框架的基础上,采用对客户端传输至服务器的参数加噪并优化方法,解决了传统的基于联邦学习框架中提供加噪保护后的模型准确率低的问题。

Patent Agency Ranking