-
公开(公告)号:CN107967440B
公开(公告)日:2021-03-30
申请号:CN201710845420.3
申请日:2017-09-19
Applicant: 北京工业大学
Abstract: 本发明公开一种基于多区域变尺度3D‑HOF的监控视频异常检测方法,首先获取监控视频作为输入,对视频进行分区处理,然后提取各分区内的变尺度3D‑HOF特征和光流方向信息熵,并组合成最终的检测特征,最后使用稀疏组合学习算法在各分区中学习一个初始稀疏组合集,通过重构误差判断新数据是否异常,并使用正常数据在线更新稀疏组合集。应用本发明,不仅解决了监控视频中存在的透视变形问题,还充分利用不同光流幅值区间内运动信息的差异,可以获得更精确的运动速度信息。本发明适用于监控视频的异常检测,计算复杂度较低,检测结果准确,算法鲁棒性好。本发明在视频分析技术领域有着广泛的应用。
-
公开(公告)号:CN107274419B
公开(公告)日:2020-10-13
申请号:CN201710555319.4
申请日:2017-07-10
Applicant: 北京工业大学
Abstract: 本发明公开一种基于全局先验和局部上下文的深度学习显著性检测方法,首先对彩色图像和深度图像进行超像素分割,基于每个超像素的紧凑性、独特性和背景性等中层特征,获得每个超像素的全局先验特征图,并进一步通过深度学习模型,得到全局先验显著图;然后,结合全局先验显著图和彩色图像与深度图像中的局部上下文信息,通过深度学习模型,得到初始显著图;最后,依据空间一致性和外观相似性优化初始显著图,得到最终显著图。应用本发明,解决了传统显著性检测方法无法有效检测到复杂背景图像中的显著物体,还解决了现有的基于深度学习的显著性检测方法由于提取出的高层特征存在噪声而导致误检的问题。
-
公开(公告)号:CN107967440A
公开(公告)日:2018-04-27
申请号:CN201710845420.3
申请日:2017-09-19
Applicant: 北京工业大学
CPC classification number: G06K9/00724 , G06K9/4647 , G06K9/6223
Abstract: 本发明公开一种基于多区域变尺度3D-HOF的监控视频异常检测方法,首先获取监控视频作为输入,对视频进行分区处理,然后提取各分区内的变尺度3D-HOF特征和光流方向信息熵,并组合成最终的检测特征,最后使用稀疏组合学习算法在各分区中学习一个初始稀疏组合集,通过重构误差判断新数据是否异常,并使用正常数据在线更新稀疏组合集。应用本发明,不仅解决了监控视频中存在的透视变形问题,还充分利用不同光流幅值区间内运动信息的差异,可以获得更精确的运动速度信息。本发明适用于监控视频的异常检测,计算复杂度较低,检测结果准确,算法鲁棒性好。本发明在视频分析技术领域有着广泛的应用。
-
公开(公告)号:CN107274419A
公开(公告)日:2017-10-20
申请号:CN201710555319.4
申请日:2017-07-10
Applicant: 北京工业大学
Abstract: 本发明公开一种基于全局先验和局部上下文的深度学习显著性检测方法,首先对彩色图像和深度图像进行超像素分割,基于每个超像素的紧凑性、独特性和背景性等中层特征,获得每个超像素的全局先验特征图,并进一步通过深度学习模型,得到全局先验显著图;然后,结合全局先验显著图和彩色图像与深度图像中的局部上下文信息,通过深度学习模型,得到初始显著图;最后,依据空间一致性和外观相似性优化初始显著图,得到最终显著图。应用本发明,解决了传统显著性检测方法无法有效检测到复杂背景图像中的显著物体,还解决了现有的基于深度学习的显著性检测方法由于提取出的高层特征存在噪声而导致误检的问题。
-
公开(公告)号:CN106991669A
公开(公告)日:2017-07-28
申请号:CN201710150961.4
申请日:2017-03-14
Applicant: 北京工业大学
Abstract: 本发明提供了一种基于深度选择性差异的显著性检测方法。该方法首先获取深度图像作为输入,然后对每一张深度图像进行平滑处理,接着计算每一个分割区域的选择性差异值,最后依据中心偏好优化初始显著图,从而得到最终的显著性检测结果。应用本发明,不仅解决了单纯基于彩色图无法检测到与背景具有相似视觉特征物体的问题,还解决了基于深度图像忽略底部背景区域从而导致误检的问题。本发明适用于深度图像的显著性检测,计算复杂度较低,检测结果准确。本发明在图像处理和计算机视觉领域有着广泛的应用。
-
公开(公告)号:CN106991669B
公开(公告)日:2019-09-27
申请号:CN201710150961.4
申请日:2017-03-14
Applicant: 北京工业大学
Abstract: 本发明提供了一种基于深度选择性差异的显著性检测方法。该方法首先获取深度图像作为输入,然后对每一张深度图像进行平滑处理,接着计算每一个分割区域的选择性差异值,最后依据中心偏好优化初始显著图,从而得到最终的显著性检测结果。应用本发明,不仅解决了单纯基于彩色图无法检测到与背景具有相似视觉特征物体的问题,还解决了基于深度图像忽略底部背景区域从而导致误检的问题。本发明适用于深度图像的显著性检测,计算复杂度较低,检测结果准确。本发明在图像处理和计算机视觉领域有着广泛的应用。
-
-
-
-
-