一种文本图像超分辨率方法

    公开(公告)号:CN110415176A

    公开(公告)日:2019-11-05

    申请号:CN201910732571.7

    申请日:2019-08-09

    Abstract: 本发明提供了一种文本图像超分辨率方法,包括:先使用深度抠图技术将低分辨率图像分解成前景图层、背景图层、alpha图层;然后,对于alpha图层,先用Teager滤波对其进行预处理,再将其送入深度空域特征转换生成对抗网络(SFTGAN)进行超分辨率操作;对于前景图层和背景图层,将其直接送入增强超分生成对抗网络(ESRGAN)进行超分辨率操作;最后,将三层超分后得到得高分辨率图像进行融合,即得到高清图像。本发明的文本图像超分辨率方法,对于低分辨率文本图像,能够较好的将其转化成高分辨率图像,可以作为图像预处理中的超分辨率过程应用到多种机器视觉领域。

    一种视频行为时间轴检测方法

    公开(公告)号:CN108830212A

    公开(公告)日:2018-11-16

    申请号:CN201810597905.X

    申请日:2018-06-12

    Abstract: 本发明公布了一种视频行为时间轴检测方法,基于深度学习和时间结构建模,并结合粗粒度检测与细粒度检测做视频行为时间轴检测,在已有模型SSN的基础上,使用双流模型来提取视频的时空特征;对行为的时间结构进行建模,将单个行为分为三个阶段;接着提出一种新的能够有效提取视频行为的时间边界信息的特征金字塔;最后结合粗粒度检测与细粒度检测,使得检测结果更加精确;本发明的检测精度高,超过了当前已有的所有公开方法,具有广泛的适用性,可适用于智能监控系统或者人机监护系统中对人类感兴趣视频片段的检测,便于后续的分析与处理,具有重要的应用价值。

    一种真实环境下的图像去噪方法

    公开(公告)号:CN110490823A

    公开(公告)日:2019-11-22

    申请号:CN201910747855.3

    申请日:2019-08-14

    Abstract: 本发明提供了一种真实环境下的图像去噪方法,包括使用连拍多张并位置矫正生成训练集,再使用域自适应扩充该训练集,最后通过将此训练集用于训练一个噪声注意力生成对抗网络,以此达到对真实环境下的噪声去噪。本发明的方法能够在真实环境未知图像噪声类型的情况下,精确地去除图像中的噪声,作为图像预处理中的去噪过程应用到多种机器视觉领域,特别地,本发明提供了对常用公开测试集的去噪实施实例。

    一种视频行为时间轴检测方法

    公开(公告)号:CN108830212B

    公开(公告)日:2022-04-22

    申请号:CN201810597905.X

    申请日:2018-06-12

    Abstract: 本发明公布了一种视频行为时间轴检测方法,基于深度学习和时间结构建模,并结合粗粒度检测与细粒度检测做视频行为时间轴检测,在已有模型SSN的基础上,使用双流模型来提取视频的时空特征;对行为的时间结构进行建模,将单个行为分为三个阶段;接着提出一种新的能够有效提取视频行为的时间边界信息的特征金字塔;最后结合粗粒度检测与细粒度检测,使得检测结果更加精确;本发明的检测精度高,超过了当前已有的所有公开方法,具有广泛的适用性,可适用于智能监控系统或者人机监护系统中对人类感兴趣视频片段的检测,便于后续的分析与处理,具有重要的应用价值。

Patent Agency Ranking