一种基于半监督神经网络模型的入侵检测方法

    公开(公告)号:CN102647292A

    公开(公告)日:2012-08-22

    申请号:CN201210074813.6

    申请日:2012-03-20

    Applicant: 北京大学

    Abstract: 本发明公开了一种基于半监督神经网络模型的入侵检测方法,属于网络信息安全领域。本方法为:1)利用训练集A初始化GHSOM神经网络第0层神经元,并计算QE0;2)从第0层神经元中拓展出一SOM,并将其层次标识Layer置为1;3)初始化第Layer层中拓展出的每一SOM,并对其进行训练,其中对获胜神经元及其邻域内神经元权值进行调整,更新获胜向量集合,计算获胜神经元的主标签、主标签比率和信息熵etyi;4)计算该SOM中每个神经元的qei,子网MQE;如果MQE>QEf*μ1则在该SOM中插入一行或者一列神经元,如果QEi>QE0*μ2或者etyi>etyf*μ3则从该神经元上长出一层新的子网,将其增加到Layer+1层的子网队列中。本方法提高了GHSOM算法检验准确性。

    一种基于半监督神经网络模型的入侵检测方法

    公开(公告)号:CN102647292B

    公开(公告)日:2014-07-23

    申请号:CN201210074813.6

    申请日:2012-03-20

    Applicant: 北京大学

    Abstract: 本发明公开了一种基于半监督神经网络模型的入侵检测方法,属于网络信息安全领域。本方法为:1)利用训练集A初始化GHSOM神经网络第0层神经元,并计算QE0;2)从第0层神经元中拓展出一SOM,并将其层次标识Layer置为1;3)初始化第Layer层中拓展出的每一SOM,并对其进行训练,其中对获胜神经元及其邻域内神经元权值进行调整,更新获胜向量集合,计算获胜神经元的主标签、主标签比率和信息熵etyi;4)计算该SOM中每个神经元的qei,子网MQE;如果MQE>QEf*μ1则在该SOM中插入一行或者一列神经元,如果QEi>QE0*μ2或者etyi>etyf*μ3则从该神经元上长出一层新的子网,将其增加到Layer+1层的子网队列中。本方法提高了GHSOM算法检验准确性。

    基于增量式GHSOM神经网络的入侵检测方法

    公开(公告)号:CN102789593A

    公开(公告)日:2012-11-21

    申请号:CN201210206778.9

    申请日:2012-06-18

    Applicant: 北京大学

    Abstract: 本发明公开了一种基于增量式GHSOM神经网络的入侵检测方法,属于网络信息安全技术领域。本方法为:1)在线采集网络数据输入给入侵检测模块;2)入侵检测模块计算可检测当前向量x的获胜神经元t;3)如果t是覆盖神经元,且x与t同类,则利用t检测x;否则为x打上未知攻击类型的标签,把x加入增量训练集;4)当t满足拓展条件时,从t下方拓展出一虚神经元t′再从t′拓展出一新SOM,利用t对应的增量训练集合It进行训练;5)查找新拓展SOM子网的成熟父神经元,如果其超过删除不成熟子网的条件,则对动态拓展出的不成熟神经网络部分重新训练;6)根据入侵检测模块输出的检测结果判断是否发生入侵。本发明能及时检测出各种入侵行为,尤其是新出现的入侵行为。

    基于增量式GHSOM神经网络的入侵检测方法

    公开(公告)号:CN102789593B

    公开(公告)日:2014-11-26

    申请号:CN201210206778.9

    申请日:2012-06-18

    Applicant: 北京大学

    Abstract: 本发明公开了一种基于增量式GHSOM神经网络的入侵检测方法,属于网络信息安全技术领域。本方法为:1)在线采集网络数据输入给入侵检测模块;2)入侵检测模块计算可检测当前向量x的获胜神经元t;3)如果t是覆盖神经元,且x与t同类,则利用t检测x;否则为x打上未知攻击类型的标签,把x加入增量训练集;4)当t满足拓展条件时,从t下方拓展出一虚神经元t′再从t′拓展出一新SOM,利用t对应的增量训练集合It进行训练;5)查找新拓展SOM子网的成熟父神经元,如果其超过删除不成熟子网的条件,则对动态拓展出的不成熟神经网络部分重新训练;6)根据入侵检测模块输出的检测结果判断是否发生入侵。本发明能及时检测出各种入侵行为,尤其是新出现的入侵行为。

Patent Agency Ranking