-
公开(公告)号:CN106970981B
公开(公告)日:2021-01-19
申请号:CN201710193366.9
申请日:2017-03-28
Applicant: 北京大学
IPC: G06F16/36 , G06F40/279
Abstract: 本发明公开了一种基于转移矩阵构建关系抽取模型的方法。本方法为:1)选择基础关系抽取模型M,其输入为一个句子或描述同一对主体和客体的一组句子,其输出为输入句子或输入的一组句子所描述的关系的分布pi,并在中间结果中生成输入句子或输入的一组句子的向量表示si;2)根据si构建一个转移矩阵Ti;3)将该模型M输出的关系分布pi乘以该转移矩阵Ti并归一化,得到输入句子或输入的一组句子可能被标注成的关系的分布oi;4)以该关系分布oi拟合有噪声的标注为目标,训练该基础关系抽取模型M直到达到预设的终止条件,得到关系抽取模型。本模型可以免受噪声的影响,从而可以取得更好的关系抽取效果。
-
公开(公告)号:CN110909864A
公开(公告)日:2020-03-24
申请号:CN201911006241.6
申请日:2019-10-22
Applicant: 北京大学
Abstract: 本发明公开一种结合正则表达式和神经网络模型的自然语言任务处理方法和装置。本方法为:1)给定一个自然语言相关的任务,针对该任务涉及的具体领域,获取正则表达式形式的领域知识,得到正则表达式集合;2)针对该任务选择一个基础的能够解决该任务的神经网络模型;3)在神经网络模型的训练过程中引入正则表达式集合中蕴含的领域知识,从而提升神经网络模型针对该任务的性能,正则表达式和神经网络模型的结合可以在不同层面上进行,包括输入层,模块层和输出层。本发明能够基于正则表达式形式的领域知识对神经网络模型的特定模块进行微调,并且辅助神经网络的训练,从而提升神经网络模型在该任务上的性能。
-
公开(公告)号:CN106970981A
公开(公告)日:2017-07-21
申请号:CN201710193366.9
申请日:2017-03-28
Applicant: 北京大学
Abstract: 本发明公开了一种基于转移矩阵构建关系抽取模型的方法。本方法为:1)选择基础关系抽取模型M,其输入为一个句子或描述同一对主体和客体的一组句子,其输出为输入句子或输入的一组句子所描述的关系的分布pi,并在中间结果中生成输入句子或输入的一组句子的向量表示si;2)根据si构建一个转移矩阵Ti;3)将该模型M输出的关系分布pi乘以该转移矩阵Ti并归一化,得到输入句子或输入的一组句子可能被标注成的关系的分布oi;4)以该关系分布oi拟合有噪声的标注为目标,训练该基础关系抽取模型M直到达到预设的终止条件,得到关系抽取模型。本模型可以免受噪声的影响,从而可以取得更好的关系抽取效果。
-
-