一种制备GaMnN稀磁半导体纳米线的方法

    公开(公告)号:CN100557770C

    公开(公告)日:2009-11-04

    申请号:CN200710121747.2

    申请日:2007-09-13

    Applicant: 北京大学

    Abstract: 本发明公开了一种制备GaMnN稀磁半导体纳米线的方法。本发明方法,包括如下步骤:1)Mn掺杂:在Ga2O3纳米线上原位掺杂Mn;2)氨化:将掺有Mn的Ga2O3纳米线在氨气气氛下进行氨化,得到GaMnN稀磁半导体纳米线。本发明方法简单,对设备要求较低,所制备的GaMnN纳米线具有很强的铁磁性,居里温度高于室温,而且其磁性掺杂浓度可控,纳米线纯度高,产量大,线形可控(调节气压等生长参数可以制备出直径几十纳米到几百纳米的纳米线),可以用于自旋场效应三极管(spin-FET),自旋发光二极管(spin-LED),自旋共振隧穿器件(spin-RTD)等纳米自旋电子器件的制造,具有广阔的应用前景。

    一种制备GaMnN稀磁半导体纳米线的方法

    公开(公告)号:CN101127303A

    公开(公告)日:2008-02-20

    申请号:CN200710121747.2

    申请日:2007-09-13

    Applicant: 北京大学

    Abstract: 本发明公开了一种制备GaMnN稀磁半导体纳米线的方法。本发明方法,包括如下步骤:1)Mn掺杂:在Ga2O3纳米线上原位掺杂Mn;2)氨化:将掺有Mn的Ga2O3纳米线在氨气气氛下进行氨化,得到GaMnN稀磁半导体纳米线。本发明方法简单,对设备要求较低,所制备的GaMnN纳米线具有很强的铁磁性,居里温度高于室温,而且其磁性掺杂浓度可控,纳米线纯度高,产量大,线形可控(调节气压等生长参数可以制备出直径几十纳米到几百纳米的纳米线),可以用于自旋场效应三极管(spin-FET),自旋发光二极管(spin-LED),自旋共振隧穿器件(spin-RTD)等纳米自旋电子器件的制造,具有广阔的应用前景。

Patent Agency Ranking