-
公开(公告)号:CN111814854B
公开(公告)日:2023-07-28
申请号:CN202010597480.X
申请日:2020-06-28
Applicant: 北京交通大学
IPC: G06V10/774 , G06V10/776 , G06V10/82 , G06V10/52 , G06N3/0464 , G06N3/047 , G06N3/08 , G06N3/084
Abstract: 本发明提供了一种无监督域适应的目标重识别方法,该方法包括:构建多尺度域适应注意力学习网络;利用源域数据集和目标域数据集对多尺度域适应注意力学习网络进行训练,计算多尺度域适应注意力学习网络的多任务损失,在多任务损失的值收敛后,得到训练好的多尺度域适应注意力学习网络;利用训练好的多尺度域适应注意力学习网络构建无监督域适应的目标重识别模型,利用无监督域适应的目标重识别模型对输入的图像进行目标重识别处理。本发明的方法通过将特征图分割成与目标相关的特征图和与域相关特征图来减少域差异,将特征图映射在不同尺度下,在多个尺度下进行分割,可以学习到仅仅与域相关的、多尺度的特征表示,从而达到了最优的性能。
-
公开(公告)号:CN109711254A
公开(公告)日:2019-05-03
申请号:CN201811404816.5
申请日:2018-11-23
Applicant: 北京交通大学
Abstract: 本发明提供一种基于对抗生成网络的图像处理方法和装置,所述方法包括:步骤S1,获取第一人脸样本图像;获取第一人脸多属性条件;步骤S2,将所述第一人脸样本图像和所述第一人脸多属性条件,输入训练好的对抗生成网络的生成网络,得到第一合成图像;步骤S3,将所述第一合成图像作为符合所述第一人脸多属性条件的人脸图像,并输出。
-
公开(公告)号:CN109711254B
公开(公告)日:2020-12-15
申请号:CN201811404816.5
申请日:2018-11-23
Applicant: 北京交通大学
Abstract: 本发明提供一种基于对抗生成网络的图像处理方法和装置,所述方法包括:步骤S1,获取第一人脸样本图像;获取第一人脸多属性条件;步骤S2,将所述第一人脸样本图像和所述第一人脸多属性条件,输入训练好的对抗生成网络的生成网络,得到第一合成图像;步骤S3,将所述第一合成图像作为符合所述第一人脸多属性条件的人脸图像,并输出。
-
公开(公告)号:CN111814854A
公开(公告)日:2020-10-23
申请号:CN202010597480.X
申请日:2020-06-28
Applicant: 北京交通大学
Abstract: 本发明提供了一种无监督域适应的目标重识别方法,该方法包括:构建多尺度域适应注意力学习网络;利用源域数据集和目标域数据集对多尺度域适应注意力学习网络进行训练,计算多尺度域适应注意力学习网络的多任务损失,在多任务损失的值收敛后,得到训练好的多尺度域适应注意力学习网络;利用训练好的多尺度域适应注意力学习网络构建无监督域适应的目标重识别模型,利用无监督域适应的目标重识别模型对输入的图像进行目标重识别处理。本发明的方法通过将特征图分割成与目标相关的特征图和与域相关特征图来减少域差异,将特征图映射在不同尺度下,在多个尺度下进行分割,可以学习到仅仅与域相关的、多尺度的特征表示,从而达到了最优的性能。
-
-
-