-
公开(公告)号:CN116192421A
公开(公告)日:2023-05-30
申请号:CN202211500772.2
申请日:2022-11-28
Applicant: 北京交通大学
IPC: H04L9/40 , H04L41/16 , G06F18/23 , G06N3/0442 , G06N3/0455 , G06N3/08
Abstract: 本发明提供了一种基于溯源图和自注意力机制的APT攻击检测方法。该方法包括:根据待进行APT攻击检测的系统日志生成溯源图,将溯源图序列抽取为特征序列,采用基于Transformer的编码器‑解码器来训练自注意力网络,生成特征提取网络,通过特征提取网络将特征序列转换为特征向量;使用改进后的ADOA算法对特征向量中的正常样本进行聚类,生成多个聚类中心,根据特征向量中的未标记的样本数据与聚类中心之间的距离,判断未标记的样本数据是否异常。本发明使用Transformer模型建模系统的状态变化,使用大量的正常数据结合自注意力机制的编码器‑解码器来训练模型提取特征,提取APT攻击对系统产生的长期影响,使得攻击行为的特征与正常行为的特征更易区分。
-
公开(公告)号:CN116192421B
公开(公告)日:2024-04-30
申请号:CN202211500772.2
申请日:2022-11-28
Applicant: 北京交通大学
IPC: H04L9/40 , H04L41/16 , G06F18/23 , G06N3/0442 , G06N3/0455 , G06N3/08
Abstract: 本发明提供了一种基于溯源图和自注意力机制的APT攻击检测方法。该方法包括:根据待进行APT攻击检测的系统日志生成溯源图,将溯源图序列抽取为特征序列,采用基于Transformer的编码器‑解码器来训练自注意力网络,生成特征提取网络,通过特征提取网络将特征序列转换为特征向量;使用改进后的ADOA算法对特征向量中的正常样本进行聚类,生成多个聚类中心,根据特征向量中的未标记的样本数据与聚类中心之间的距离,判断未标记的样本数据是否异常。本发明使用Transformer模型建模系统的状态变化,使用大量的正常数据结合自注意力机制的编码器‑解码器来训练模型提取特征,提取APT攻击对系统产生的长期影响,使得攻击行为的特征与正常行为的特征更易区分。
-