面向联邦学习投毒攻击的防御方法及系统

    公开(公告)号:CN115907029A

    公开(公告)日:2023-04-04

    申请号:CN202211391958.9

    申请日:2022-11-08

    Abstract: 本发明提供一种面向联邦学习投毒攻击的防御方法及系统,属于网络安全技术领域,在每轮联邦训练开始阶段将全局模型传输给各个参与方;其中,在第一轮联邦训练时初始化全局模型;利用接收到的参数更新后的全局模型,聚合新的全局模型;其中,参与方基于本地数据和初始化全局模型进行规定轮次的本地训练,进行全局模型参数的更新。本发明计算每一层模型更新的偏差和整体模型更新的偏差,将超过阈值的模型更新偏差的数量作为异常得分,筛选异常得分最小的参与方的模型更新进行聚合,实现了比仅考虑全部参数的距离更细粒度的筛选,筛选结果的数量基于更新参数的异常程度,保证了模型的收敛速度和准确率,同时能有效地应对目标性和非目标性的投毒攻击。

    面向联邦学习投毒攻击的防御方法及系统

    公开(公告)号:CN115907029B

    公开(公告)日:2023-07-21

    申请号:CN202211391958.9

    申请日:2022-11-08

    Abstract: 本发明提供一种面向联邦学习投毒攻击的防御方法及系统,属于网络安全技术领域,在每轮联邦训练开始阶段将全局模型传输给各个参与方;其中,在第一轮联邦训练时初始化全局模型;利用接收到的参数更新后的全局模型,聚合新的全局模型;其中,参与方基于本地数据和初始化全局模型进行规定轮次的本地训练,进行全局模型参数的更新。本发明计算每一层模型更新的偏差和整体模型更新的偏差,将超过阈值的模型更新偏差的数量作为异常得分,筛选异常得分最小的参与方的模型更新进行聚合,实现了比仅考虑全部参数的距离更细粒度的筛选,筛选结果的数量基于更新参数的异常程度,保证了模型的收敛速度和准确率,同时能有效地应对目标性和非目标性的投毒攻击。

Patent Agency Ranking