-
公开(公告)号:CN118333089A
公开(公告)日:2024-07-12
申请号:CN202410394066.7
申请日:2024-04-02
Applicant: 北京交通大学
Abstract: 本发明提供一种基于双曲空间传播的图解耦节点表征学习方法及系统,属于图表示学习技术领域,获取各节点的初步表征,映射至多个曲率不同的双曲空间,得到一组数据表征,分别对应各双曲空间;将多组数据表征与图的原始拓扑结构相结合,通过双曲空间下的固有距离于各个双曲空间中构建各异的传播矩阵,捕获多种潜在因子对表征学习的影响;将每个空间内的节点表征传播视为一个个独立的专家模块,计算各模块重要性,使用混合专家结构,聚合生成最终适用于下游任务的节点表征。本发明基于双曲空间与图数据的适配性,通过多个双曲空间挖掘图中隐因子的影响,完成特征解耦,最终通过混合专家架构生成最终的节点表示,解决了图网络中特征传播非参数化问题。