基于视频的铁路周界异物入侵检测方法

    公开(公告)号:CN111507235B

    公开(公告)日:2024-05-28

    申请号:CN202010285277.9

    申请日:2020-04-13

    Abstract: 本发明提供了一种基于视频的铁路周界异物入侵检测方法,用以解决克服铁路周界异物入侵检测方法消耗资源大、准确率不高的问题。所述铁路周界异物入侵检测方法,获取当前铁路周界监控视频图像并提取第N帧,采用KNN算法检测第N帧中的异物目标数n,并对满足预定条件的第i帧采用铁路场景YOLOv3模椟检测异物目标数m,再对m、n进行比较,输出检测目标数G=m=n或G=α×m+β×n。本发明入侵异物检测方法消耗的计算机资源小,检测漏报率低、准确率高,提高了识别的精确性;同时,在与YOLOv3算法检测准确率相同的前提下,降低了计算机内存使用情况,更具有可应用性。

    基于视频的铁路周界异物入侵检测方法

    公开(公告)号:CN111507235A

    公开(公告)日:2020-08-07

    申请号:CN202010285277.9

    申请日:2020-04-13

    Abstract: 本发明提供了一种基于视频的铁路周界异物入侵检测方法,用以解决克服铁路周界异物入侵检测方法消耗资源大、准确率不高的问题。所述铁路周界异物入侵检测方法,获取当前铁路周界监控视频图像并提取第N帧,采用KNN算法检测第N帧中的异物目标数n,并对满足预定条件的第i帧采用铁路场景YOLOv3模椟检测异物目标数m,再对m、n进行比较,输出检测目标数G=m=n或G=α×m+β×n。本发明入侵异物检测方法消耗的计算机资源小,检测漏报率低、准确率高,提高了识别的精确性;同时,在与YOLOv3算法检测准确率相同的前提下,降低了计算机内存使用情况,更具有可应用性。

    基于铁路监控的铁路异物入侵检测方法

    公开(公告)号:CN111160125A

    公开(公告)日:2020-05-15

    申请号:CN201911267535.4

    申请日:2019-12-11

    Abstract: 本发明提供了一种基于铁路监控的铁路异物入侵检测方法。该方法包括:利用已知的铁路场景下的监控视频的包含异物入侵的原始图像训练YOLOv3,得到训练完成的模型权重,获取待监测的铁路场景下的监控视频,从监控视频中提取一系列的待监测的原始图像,通过现有的高斯混合模型对待监测的原始图像进行处理,输出的二值图像依次使用形态学处理、阈值自适应和非极大值抑制算法处理,获取包含异物入侵的图像区域;将包含异物入侵的图像区域输入YOLOv3中,该YOLOv3根据训练完成的模型权重输出相应的原始图像中的异物类型和异物定位位置信息。本发明降低了高斯混合算法带来的误报率,提高了YOLOv3算法在远距离目标或和小目标上的检测效果,可以有效地监测出铁路异物入侵。

    基于铁路监控的铁路异物入侵检测方法

    公开(公告)号:CN111160125B

    公开(公告)日:2023-06-30

    申请号:CN201911267535.4

    申请日:2019-12-11

    Abstract: 本发明提供了一种基于铁路监控的铁路异物入侵检测方法。该方法包括:利用已知的铁路场景下的监控视频的包含异物入侵的原始图像训练YOLOv3,得到训练完成的模型权重,获取待监测的铁路场景下的监控视频,从监控视频中提取一系列的待监测的原始图像,通过现有的高斯混合模型对待监测的原始图像进行处理,输出的二值图像依次使用形态学处理、阈值自适应和非极大值抑制算法处理,获取包含异物入侵的图像区域;将包含异物入侵的图像区域输入YOLOv3中,该YOLOv3根据训练完成的模型权重输出相应的原始图像中的异物类型和异物定位位置信息。本发明降低了高斯混合算法带来的误报率,提高了YOLOv3算法在远距离目标或和小目标上的检测效果,可以有效地监测出铁路异物入侵。

Patent Agency Ranking