-
公开(公告)号:CN117272370A
公开(公告)日:2023-12-22
申请号:CN202311189893.4
申请日:2023-09-14
Applicant: 北京交通大学
IPC: G06F21/62 , G06F16/9536 , G06N3/0442 , G06N3/08
Abstract: 本说明书实施例提供了一种基于用户轨迹序列的下一个兴趣点隐私保护推荐方法及系统,其中,方法包括:捕捉用户签到行为中复杂的序列转移模式和动态偏好,根据所述序列转移模式和动态偏好,基于序列模型建立融合用户长短期偏好特征的轨迹预测模型;将所述轨迹预测模型设置为联邦推荐训练形式,在轨迹数据不出当前地区范围的前提下,通过协调多个用户设备共同优化所述轨迹预测模型,并在优化过程中通过差分隐私机制对模型参数进行加噪保护。
-
公开(公告)号:CN115048590B
公开(公告)日:2023-05-16
申请号:CN202210609528.3
申请日:2022-05-31
Applicant: 北京交通大学
IPC: G06F16/9537 , G06F21/62 , G06F18/23213 , G06Q50/30
Abstract: 本发明提供了一种面向隐私保护的基于联邦分析的班车定制方法。该方法包括服务器确定所有准入的用户设备需要划分的聚类数,每个聚类代表一个班车站点,将各个聚类中心点的位置信息下发到各个用户设备;各个用户设备比较其与各个聚类中心点之间的距离,选择距离最小的聚类中心点对应的聚类作为自己所属的聚类;各个用户设备在本地对其位置数据进行隐私处理后发送给服务器;服务器将接收到的所有用户设备的位置数据进行联邦聚合,更新各个聚类中心点的位置信息。本发明面向隐私保护的基于联邦分析的班车定制方法在数据隐私保护的情况下,进行联邦聚类,分析得到正确的班车站点,便于实施并且精度较高,方便用户的快捷舒适的出行。
-
公开(公告)号:CN115048590A
公开(公告)日:2022-09-13
申请号:CN202210609528.3
申请日:2022-05-31
Applicant: 北京交通大学
IPC: G06F16/9537 , G06F21/62 , G06K9/62 , G06Q50/30
Abstract: 本发明提供了一种面向隐私保护的基于联邦分析的班车定制方法。该方法包括服务器确定所有准入的用户设备需要划分的聚类数,每个聚类代表一个班车站点,将各个聚类中心点的位置信息下发到各个用户设备;各个用户设备比较其与各个聚类中心点之间的距离,选择距离最小的聚类中心点对应的聚类作为自己所属的聚类;各个用户设备在本地对其位置数据进行隐私处理后发送给服务器;服务器将接收到的所有用户设备的位置数据进行联邦聚合,更新各个聚类中心点的位置信息。本发明面向隐私保护的基于联邦分析的班车定制方法在数据隐私保护的情况下,进行联邦聚类,分析得到正确的班车站点,便于实施并且精度较高,方便用户的快捷舒适的出行。
-
公开(公告)号:CN117272370B
公开(公告)日:2024-03-22
申请号:CN202311189893.4
申请日:2023-09-14
Applicant: 北京交通大学
IPC: G06F21/62 , G06F16/9536 , G06N3/0442 , G06N3/08
Abstract: 本说明书实施例提供了一种基于用户轨迹序列的下一个兴趣点隐私保护推荐方法及系统,其中,方法包括:捕捉用户签到行为中复杂的序列转移模式和动态偏好,根据所述序列转移模式和动态偏好,基于序列模型建立融合用户长短期偏好特征的轨迹预测模型;将所述轨迹预测模型设置为联邦推荐训练形式,在轨迹数据不出当前地区范围的前提下,通过协调多个用户设备共同优化所述轨迹预测模型,并在优化过程中通过差分隐私机制对模型参数进行加噪保护。
-
-
-