-
公开(公告)号:CN109031153B
公开(公告)日:2020-01-24
申请号:CN201811200371.9
申请日:2018-10-16
申请人: 北京交通大学
IPC分类号: G01R31/367 , G01R31/385
摘要: 本发明属于锂离子电池领域,公开了一种锂离子电池的SOH在线估计方法,用于解决现有SOH估计技术在实施过程中存在的特征参数在线获取困难,模型对训练数据依赖性强且所需数据量大,采用简单线性回归较难刻画电池容量与特征参数复杂的函数关系,估计精度难以保证的问题。本发明采用容量增量法从容量增量曲线中获取特征参数,该方法不要求电池经历完整的充放电过程,特征参数提取更加简单,有利于该方法在BMS中的应用;利用多输出高斯过程回归模型方法完成特征参数与SOH函数模型的建立,更好地利用不同输出之间的潜在关联性,提高SOH的估计精度;同时该方法对于训练数据依赖较小,对不同类型的锂离子电池具有很好的适应性。
-
公开(公告)号:CN110703101B
公开(公告)日:2021-01-05
申请号:CN201910861836.3
申请日:2019-09-12
申请人: 北京交通大学
IPC分类号: G01R31/367 , G01R31/392
摘要: 本发明涉及一种锂离子电池分区间循环容量衰退预测方法,包括如下步骤:S1、对锂离子电池进行不同SOC区间衰退测试,得到不同SOC区间的测试数据;S2、进行分区间特征参数提取;S3、利用Keras深度学习框架构建LSTM RNN模型,对模型进行初始化;S4、利用步骤S1得到的测试数据和步骤S2得到的特征参数的值对LSTM RNN模型进行训练,并进行模型验证;S5、经过模型训练和模型验证后的LSTM RNN模型,通过迭代的形式输出给定区间下循环电池的容量衰退曲线,根据区间范围[SOCk‑1,SOCk]的不同,输出不同循环次数下的电池容量值,对电池的衰退容量进行预测。
-
公开(公告)号:CN110703101A
公开(公告)日:2020-01-17
申请号:CN201910861836.3
申请日:2019-09-12
申请人: 北京交通大学
IPC分类号: G01R31/367 , G01R31/392
摘要: 本发明涉及一种锂离子电池分区间循环容量衰退预测方法,包括如下步骤:S1、对锂离子电池进行不同SOC区间衰退测试,得到不同SOC区间的测试数据;S2、进行分区间特征参数提取;S3、利用Keras深度学习框架构建LSTM RNN模型,对模型进行初始化;S4、利用步骤S1得到的测试数据和步骤S2得到的特征参数的值对LSTM RNN模型进行训练,并进行模型验证;S5、经过模型训练和模型验证后的LSTM RNN模型,通过迭代的形式输出给定区间下循环电池的容量衰退曲线,根据区间范围[SOCk-1,SOCk]的不同,输出不同循环次数下的电池容量值,对电池的衰退容量进行预测。
-
公开(公告)号:CN109031153A
公开(公告)日:2018-12-18
申请号:CN201811200371.9
申请日:2018-10-16
申请人: 北京交通大学
IPC分类号: G01R31/36
摘要: 本发明属于锂离子电池领域,公开了一种锂离子电池的SOH在线估计方法,用于解决现有SOH估计技术在实施过程中存在的特征参数在线获取困难,模型对训练数据依赖性强且所需数据量大,采用简单线性回归较难刻画电池容量与特征参数复杂的函数关系,估计精度难以保证的问题。本发明采用容量增量法从容量增量曲线中获取特征参数,该方法不要求电池经历完整的充放电过程,特征参数提取更加简单,有利于该方法在BMS中的应用;利用多输出高斯过程回归模型方法完成特征参数与SOH函数模型的建立,更好地利用不同输出之间的潜在关联性,提高SOH的估计精度;同时该方法对于训练数据依赖较小,对不同类型的锂离子电池具有很好的适应性。
-
-
-