-
公开(公告)号:CN119417780A
公开(公告)日:2025-02-11
申请号:CN202411462175.4
申请日:2024-10-18
Applicant: 兰州交通大学
IPC: G06T7/00 , G06V10/26 , G06V10/82 , G06N3/0464 , G06N3/09
Abstract: 本发明公开了一种基于CF‑HRnet的胰腺病灶CT图像分割方法。本发明使用导入预训练权重的HRNet在NIH Pancreas数据集上进行训练,采用RSTN算法中的由粗到精训练框架进行训练,并在原有RSTN粗分割和精分割步骤基础上,本发明添加了预处理和联合训练两个步骤,通过增加学习层次和训练批次,使得网络性能进一步提升,关键的优化点在于引入模型参数传递功能和对RSTN分割流程再细化,更加精准地引导神经网络对胰腺病灶的位置信息和细节信息进行识别。本发明在提升病灶区域分割精确度的同时,大幅降低模型参数数量,为胰腺疾病的诊断提供了强有力的支持。