-
公开(公告)号:CN114031837A
公开(公告)日:2022-02-11
申请号:CN202111566202.9
申请日:2021-12-20
Applicant: 全球能源互联网研究院有限公司 , 国网福建省电力有限公司厦门供电公司
Abstract: 本发明涉及一种高压电缆用可交联聚乙烯绝缘材料、制备方法及其用途。按照各组分占质量百分比计,所述绝缘材料包括如下组分:聚乙烯基料97.5‑99.3%、交联剂0.5‑2%、助交联剂0.1~0.5%和抗氧化剂0.1‑0.5%。通过引入高支化度的聚乙烯对传统绝缘料进行改性,降低了绝缘材料中引起电导非线性变化的极性交联分解副产物,有效抑制了电荷在直流电场下产生和迁移,进而抑制了高压电缆中电导率非线性效应。同时该绝缘材料的制备方法简单可行,工业化可实施性强。所述聚乙烯绝缘材料可应用于高压直流电缆中。
-
公开(公告)号:CN113985230A
公开(公告)日:2022-01-28
申请号:CN202111273311.1
申请日:2021-10-29
Applicant: 全球能源互联网研究院有限公司
IPC: G01R31/12
Abstract: 本发明涉及击穿测试装置技术领域,具体涉及一种温度梯度下的击穿测试装置。所述温度梯度下的击穿测试装置包括:壳体;绝缘试样,固定在所述壳体内;高压电极,位于所述壳体内且与所述绝缘试样厚度方向的一侧相接触;低压电极,位于所述壳体内且与所述绝缘试样厚度方向的另一侧相接触;加热机构,适于对所述高压电极或低压电极进行加热。本发明提供的温度梯度下的击穿测试装置,可控制高压电极与低压电极达到不同的温度,形成温度梯度,从而实现温度梯度下的击穿测量,克服了现有技术中击穿测试装置不能满足温度梯度下测量的缺陷。
-
公开(公告)号:CN109369874B
公开(公告)日:2021-11-30
申请号:CN201811063595.X
申请日:2018-09-12
Applicant: 全球能源互联网研究院有限公司 , 国网江苏省电力有限公司
IPC: C08G18/48 , C08K13/02 , C08K3/22 , C08K3/36 , C08K3/28 , C08K3/34 , C08K5/053 , C09J175/08 , H01F27/22 , H02M1/32
Abstract: 本发明涉及一种聚氨酯组合物及使用其的饱和电抗器,其中,所述聚氨酯组合物,以重量份计,其原料包括,二苯基甲烷二异氰酸酯100‑120份,聚醚多元醇20‑30份,催化剂0.5‑1份,阻燃剂0.5‑2份,无机填料150‑350份,所述无机填料包括粒径D50在30‑50μm之间的大颗粒无机填料和粒径D50在10‑15μm之间的小颗粒无机填料,制得的聚氨酯组合物具有良好的绝缘性和机械力学特性,通过制得的聚氨酯组合物与现有的高导热环氧树脂配合使用制备得到饱和电抗器,聚氨酯组合物与高导热环氧树脂能够起到协同增效的作用,提高饱和电抗器的热传导效率,大幅降低饱和电抗器的铁心运行温度。
-
公开(公告)号:CN113001806A
公开(公告)日:2021-06-22
申请号:CN201911316190.7
申请日:2019-12-19
Applicant: 霹幕能源科技(上海)有限公司 , 全球能源互联网研究院有限公司
Abstract: 一种用于制备可交联聚乙烯化合物的系统及方法,其中包括改进型惯性混合器,包括:壳体以及固定排列于其内部的若干混流模块,每个混流模块为钢条制成的笼式结构,从而在壳体内部构成迷宫结构,实现原材料自壳体一端输入后在壳体内部充分混合和冷却至壳体另一端输出。本发明能够解决材料许用温度矛盾,兼顾洁净要求用于制备可交联聚乙烯化合物,同时,此方法的在产品质量(如均化程度)、单位产品能耗、以及装置的固定资产投入的需求上均优于现有的方法。
-
公开(公告)号:CN111077425A
公开(公告)日:2020-04-28
申请号:CN202010054324.9
申请日:2020-01-17
Applicant: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网江苏省电力有限公司电力科学研究院 , 山东泰开电器绝缘有限公司
Abstract: 本发明涉及高压试验设备技术领域,具体涉及一种800kV绝缘拉杆的电性能检验装置,包括装配筒,具有密封腔室;高压端屏蔽筒和低压端屏蔽筒,均设置在所述密封腔室内,所述高压端屏蔽筒和低压端屏蔽筒之间设有绝缘拉杆,所述绝缘拉杆的一端伸入至所述高压端屏蔽筒内,另一端与所述低压端屏蔽筒转动连接。本发明提供一种模拟实际绝缘拉杆的安装状态,提高试验结果准确性的800kV绝缘拉杆的电性能检验装置。
-
公开(公告)号:CN110936637A
公开(公告)日:2020-03-31
申请号:CN201911039172.9
申请日:2019-10-29
Applicant: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网江苏省电力有限公司电力科学研究院
Abstract: 本发明涉及复合绝缘管材制备领域,具体涉及一种复合绝缘管材真空浸渍用模具及复合绝缘管材的制备方法、复合绝缘管材,复合绝缘管材真空浸渍用模具包括:芯轴;设置在芯轴外,与芯轴配合形成浸渍空间的外套筒,外套筒由透明材料制成;用于封闭芯轴及外套筒的盖板,进料口开设在盖板上;用于将盖板与外套筒固定的固定组件;以及,用于将盖板与外套筒进行密封的密封件。通过将外套筒设置为由透明材料制成,在真空浸渍的过程中,可以直接观察到树脂基体在模具中的流动状态,及时判断是否出现漏点气泡,使得操作人员可以在第一时间获知成型过程中出现的问题并及时处理,提高了复合绝缘管材的成品率,节约了生产成本。
-
公开(公告)号:CN110551363A
公开(公告)日:2019-12-10
申请号:CN201810542371.0
申请日:2018-05-30
Applicant: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网江苏省电力有限公司 , 国网江苏省电力有限公司信息通信分公司
Abstract: 本发明属于绝缘材料制备技术领域,具体涉及一种纳米氧化铝复合环氧树脂绝缘材料。本发明提供的制备纳米级α-氧化铝的方法,通过使勃姆石颗粒和有机酸在溶剂中发生反应,干燥后在1100~1200℃下煅烧,得到了纳米级α-氧化铝。本发明提供的方法简单易工业实现,通过控制煅烧温度能够将粒径尺寸控制在纳米级。通过优选勃姆石颗粒的平均粒径小于300nm,能够获得尺寸更加均一的纳米级α-氧化铝;通过优选正己酸、异辛酸、正庚酸和3-甲基辛酸,限定反应时间,能够最大限度利用勃姆石原料,获得更高的产率。
-
公开(公告)号:CN110343233A
公开(公告)日:2019-10-18
申请号:CN201910568396.2
申请日:2019-06-27
Applicant: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网上海市电力公司
IPC: C08G18/76 , C08G18/66 , C08G18/42 , C08G18/36 , C08G18/10 , C08G18/08 , C08K5/12 , C08K5/11 , C08K5/109 , C08K5/1515
Abstract: 本发明公开了电工材料技术领域的一种高绝缘聚氨酯灌封料及其制备方法和应用。本发明高绝缘聚氨酯灌封料,以所述高绝缘聚氨酯灌封料的总质量计,包括如下组分:8~70wt%的长支链聚酯二元醇、5~50wt%的异氰酸酯、5~35wt%的憎水剂、2~37.8wt%的活性降粘剂、3~30wt%的交联剂、0.1~2.5wt%的防老剂、0.1~0.7wt%的消泡剂和0.1~3wt%的催化剂。添加憎水剂,可以极大减少材料的极性,减少材料吸水率、耐水解性能,提高灌封料在高绝缘工况中的稳定性。添加活性降粘剂,可以降低灌封料的粘度,且活性降粘剂的用量少,效果好,固化后容易挥发,收缩率低。本发明提供的高绝缘聚氨酯灌封料粘度低、工艺性好、拉伸强度大、耐碱解、耐老化、吸水率低,可满足苛刻应用工况环境要求。
-
公开(公告)号:CN113985230B
公开(公告)日:2023-08-15
申请号:CN202111273311.1
申请日:2021-10-29
Applicant: 全球能源互联网研究院有限公司
IPC: G01R31/12
Abstract: 本发明涉及击穿测试装置技术领域,具体涉及一种温度梯度下的击穿测试装置。所述温度梯度下的击穿测试装置包括:壳体;绝缘试样,固定在所述壳体内;高压电极,位于所述壳体内且与所述绝缘试样厚度方向的一侧相接触;低压电极,位于所述壳体内且与所述绝缘试样厚度方向的另一侧相接触;加热机构,适于对所述高压电极或低压电极进行加热。本发明提供的温度梯度下的击穿测试装置,可控制高压电极与低压电极达到不同的温度,形成温度梯度,从而实现温度梯度下的击穿测量,克服了现有技术中击穿测试装置不能满足温度梯度下测量的缺陷。
-
公开(公告)号:CN111363315A
公开(公告)日:2020-07-03
申请号:CN202010393548.2
申请日:2020-05-11
Applicant: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网辽宁省电力有限公司电力科学研究院
Abstract: 本发明属于电气绝缘材料制备技术领域,具体涉及一种环氧树脂绝缘材料及其制备方法和应用。该环氧树脂绝缘材料的原料包括92-107份环氧树脂、20-50份有机硅改性树脂和130-190份填料,所述有机硅改性树脂中的Si-CH3的摩尔含量为23.33%-47.17%。该绝缘材料中含有大量Si-CH3的有机硅改性树脂对环氧树脂进行改性,可以使环氧树脂具有较好的憎水性和憎水迁移性,同时有机硅改性树脂还能与环氧树脂形成网络交联结构,提高环氧树脂绝缘材料的力学强度和冲击强度;通过在该环氧树脂中加入填料,可以结合物理填充改性技术进一步提高环氧树脂的憎水性能、低温脆性和冲击强度。
-
-
-
-
-
-
-
-
-