-
公开(公告)号:CN111768342B
公开(公告)日:2020-12-01
申请号:CN202010915168.0
申请日:2020-09-03
Applicant: 之江实验室
Abstract: 本发明涉及一种基于注意力机制和多级反馈监督的人脸超分辨方法,采用两个阶段学习极低分辨率的人脸图像到高分辨率图像的映射,并且学习一个额外的反馈回归映射,估计下采样核并重建低分辨率图像,形成一个闭环来提供额外的监督。首先利用残差网络和通道注意力机制对原始图像进行特征提取,利用亚像素卷积进行上采样,得到质量较好的图像并进行反馈监督,然后输入到精细超分辨网络中得到目标高分辨图像,并对其提取人脸五官解析图,将解析图和主网络图像特征融合后送到一个精细的超分辨解码器来恢复高分辨图像,并进行反馈监督。本发明针对原始图片无法提取较好的人脸几何形状,采用两级超分辨网络和反馈回归映射进一步增强人脸特征。
-
公开(公告)号:CN111768342A
公开(公告)日:2020-10-13
申请号:CN202010915168.0
申请日:2020-09-03
Applicant: 之江实验室
Abstract: 本发明涉及一种基于注意力机制和多级反馈监督的人脸超分辨方法,采用两个阶段学习极低分辨率的人脸图像到高分辨率图像的映射,并且学习一个额外的反馈回归映射,估计下采样核并重建低分辨率图像,形成一个闭环来提供额外的监督。首先利用残差网络和通道注意力机制对原始图像进行特征提取,利用亚像素卷积进行上采样,得到质量较好的图像并进行反馈监督,然后输入到精细超分辨网络中得到目标高分辨图像,并对其提取人脸五官解析图,将解析图和主网络图像特征融合后送到一个精细的超分辨解码器来恢复高分辨图像,并进行反馈监督。本发明针对原始图片无法提取较好的人脸几何形状,采用两级超分辨网络和反馈回归映射进一步增强人脸特征。
-