一种分布式模型训练系统及方法

    公开(公告)号:CN118396140B

    公开(公告)日:2024-09-13

    申请号:CN202410849948.8

    申请日:2024-06-27

    Abstract: 本说明书公开了一种分布式模型训练系统及方法,第二计算节点基于适应度函数确定各树型结构模型的当前适应度,选择目标树型结构模型,第一计算节点选择参考树型结构模型,根据参考树型结构模型和目标树型结构模型,生成进化操作执行任务,将其分配给各第二计算节点,使其执行各进化操作执行任务,得到更新后的树型结构模型,第一计算节点从各更新后的树型结构模型中确定各选中的树型结构模型,并以此构建当前待训练模型,迭代多次直到满足第一预设条件,得到训练完成的目标模型。可见,上述方案实现了基于大型计算集群的分布式训练的适配,解决了大型树型模型占用计算资源高的问题,提升了大型树型模型的训练效率。

    一种分布式模型训练系统及方法

    公开(公告)号:CN118396140A

    公开(公告)日:2024-07-26

    申请号:CN202410849948.8

    申请日:2024-06-27

    Abstract: 本说明书公开了一种分布式模型训练系统及方法,第二计算节点基于适应度函数确定各树型结构模型的当前适应度,选择目标树型结构模型,第一计算节点选择参考树型结构模型,根据参考树型结构模型和目标树型结构模型,生成进化操作执行任务,将其分配给各第二计算节点,使其执行各进化操作执行任务,得到更新后的树型结构模型,第一计算节点从各更新后的树型结构模型中确定各选中的树型结构模型,并以此构建当前待训练模型,迭代多次直到满足第一预设条件,得到训练完成的目标模型。可见,上述方案实现了基于大型计算集群的分布式训练的适配,解决了大型树型模型占用计算资源高的问题,提升了大型树型模型的训练效率。

Patent Agency Ranking