一种基于自注意力机制的通用图像目标检测方法和装置

    公开(公告)号:CN113902926B

    公开(公告)日:2022-05-31

    申请号:CN202111477045.4

    申请日:2021-12-06

    Abstract: 本发明公开一种基于自注意力机制的通用图像目标检测方法,该方法是基于DETR模型的改进,其包括对将含边界框标注的训练集图像输入图像特征提取网络,获得图像特征;将图像特征依次通过多头十字交叉注意力模块和多方向交叉注意力模块,获得解码器输出增强目标查询向量;将增强目标查询向量分别通过模型的分类层和回归层得到目标图像物体边界框和物体类别概率;计算网络整体损失对模型进行训练,得到目标检测模型;利用上述模型对待检测图像进行目标检测。本发明相比于DETR模型,在保证目标检测准确的同时,加快模型训练速度,减小模型的计算复杂度,提高模型灵活性与实用性。

    一种基于自注意力机制的通用图像目标检测方法和装置

    公开(公告)号:CN113902926A

    公开(公告)日:2022-01-07

    申请号:CN202111477045.4

    申请日:2021-12-06

    Abstract: 本发明公开一种基于自注意力机制的通用图像目标检测方法,该方法是基于DETR模型的改进,其包括对将含边界框标注的训练集图像输入图像特征提取网络,获得图像特征;将图像特征依次通过多头十字交叉注意力模块和多方向交叉注意力模块,获得解码器输出增强目标查询向量;将增强目标查询向量分别通过模型的分类层和回归层得到目标图像物体边界框和物体类别概率;计算网络整体损失对模型进行训练,得到目标检测模型;利用上述模型对待检测图像进行目标检测。本发明相比于DETR模型,在保证目标检测准确的同时,加快模型训练速度,减小模型的计算复杂度,提高模型灵活性与实用性。

Patent Agency Ranking