基于头部效应和循环神经网络的交通拥堵预测方法和装置

    公开(公告)号:CN116151493B

    公开(公告)日:2023-07-25

    申请号:CN202310443476.1

    申请日:2023-04-24

    Abstract: 本发明公开了一种基于头部效应和循环神经网络的交通拥堵预测方法和装置,属于交通预测领域,包括:获取车辆轨迹点序列数据并依次进行清洗和路网匹配得到有效轨迹点序列数据;基于有效轨迹点序列数据构建节点表示轨迹点对应访问行为、连边表示行为间关系强度的原始行为图;基于头部效应在有效轨迹点序列数据中挖掘真实意图轨迹数据,基于真实意图轨迹数据对原始行为图进行意图增强,得到意图增强行为图;对意图增强行为图进行嵌入表示得到嵌入向量;采用门控循环神经网络根据嵌入向量预测未来时刻轨迹点对应的访问行为后,对访问行为进行密度聚类,根据聚类结果预测交通拥堵情况。该方法和装置通过考虑头部效应以提升交通拥堵的预测准确性。

    基于头部效应和循环神经网络的交通拥堵预测方法和装置

    公开(公告)号:CN116151493A

    公开(公告)日:2023-05-23

    申请号:CN202310443476.1

    申请日:2023-04-24

    Abstract: 本发明公开了一种基于头部效应和循环神经网络的交通拥堵预测方法和装置,属于交通预测领域,包括:获取车辆轨迹点序列数据并依次进行清洗和路网匹配得到有效轨迹点序列数据;基于有效轨迹点序列数据构建节点表示轨迹点对应访问行为、连边表示行为间关系强度的原始行为图;基于头部效应在有效轨迹点序列数据中挖掘真实意图轨迹数据,基于真实意图轨迹数据对原始行为图进行意图增强,得到意图增强行为图;对意图增强行为图进行嵌入表示得到嵌入向量;采用门控循环神经网络根据嵌入向量预测未来时刻轨迹点对应的访问行为后,对访问行为进行密度聚类,根据聚类结果预测交通拥堵情况。该方法和装置通过考虑头部效应以提升交通拥堵的预测准确性。

Patent Agency Ranking