-
公开(公告)号:CN116450344A
公开(公告)日:2023-07-18
申请号:CN202310269682.5
申请日:2023-03-13
Abstract: 本说明书公开了一种任务执行方法、装置、存储介质及电子设备。所述任务执行方法包括:根据第一任务指令,获取目标模型以及各候选训练框架,以不同候选训练框架对目标模型进行训练时所涉及的指定参数、不同候选训练框架所调用的算子和各算子之间的依赖关系,以及不同候选训练框架对所述目标模型进行更新时的更新方式中的至少一种保持等价为目标,得到各调整后框架,确定部署目标模型的终端设备基于该调整后框架执行目标模型的运算操作时的运算时长,根据运算时长,确定调整后框架对应的优先级,根据每个调整后框架的优先级,从各候选训练框架中确定出目标训练框架,当接收到第二任务指令时,通过目标训练框架,执行模型训练任务。
-
公开(公告)号:CN117093871B
公开(公告)日:2024-02-13
申请号:CN202311335992.9
申请日:2023-10-16
Applicant: 之江实验室
IPC: G06F18/214 , G06F18/20 , G06N3/0464 , G06N3/08
Abstract: 本申请涉及一种面向深度学习分布式训练测评方法和系统,其中,面向深度学习分布式训练测评方法包括:对各所述分布式神经网络模型分别进行训练,获得对应的第一性能指标;并基于各所述第一性能指标,调整各所述分布式神经网络模型的所述分布式优化算法、所述分布式策略并行度以及所述训练参数,以进行优化训练,得到对应的第二性能指标;基于各所述第二性能指标,确定最优分布式神经网络模型。本发明使用指标量化评估各分布式神经网络模型计算的性能,并基于评估指标进一步进行优化训练,提高了各分布式神经网络模型计算的性能,通过优化后的指标,获得最优分布式神经网络模型,帮助技术人员高效部署分布式神经网络模型。(56)对比文件Wang Fangyu 等.Research on imblanceddata set preprocessing based on deeplearning《.2021 Asia-Pacific Conference onCommunications Technology and ComputerScience(ACCTCS)》.2021,第75-79页.
-
公开(公告)号:CN117093871A
公开(公告)日:2023-11-21
申请号:CN202311335992.9
申请日:2023-10-16
Applicant: 之江实验室
IPC: G06F18/214 , G06F18/20 , G06N3/0464 , G06N3/08
Abstract: 本申请涉及一种面向深度学习分布式训练测评方法和系统,其中,面向深度学习分布式训练测评方法包括:对各所述分布式神经网络模型分别进行训练,获得对应的第一性能指标;并基于各所述第一性能指标,调整各所述分布式神经网络模型的所述分布式优化算法、所述分布式策略并行度以及所述训练参数,以进行优化训练,得到对应的第二性能指标;基于各所述第二性能指标,确定最优分布式神经网络模型。本发明使用指标量化评估各分布式神经网络模型计算的性能,并基于评估指标进一步进行优化训练,提高了各分布式神经网络模型计算的性能,通过优化后的指标,获得最优分布式神经网络模型,帮助技术人员高效部署分布式神经网络模型。
-
-