基于BERT模型的文档关键词抽取方法及装置

    公开(公告)号:CN112883171B

    公开(公告)日:2023-02-03

    申请号:CN202110142917.5

    申请日:2021-02-02

    Abstract: 一种基于BERT模型的文档关键词抽取方法,其包括以下步骤:将文档集合中的每篇文档通过BERT模型进行编码,并提取BERT模型生成的文档语义对每个子词的注意力权重;将子词还原成词语,并将子词的注意力权重聚合为词语的注意力权重;将文档中不同位置的同一词语的注意力权重聚合为词语的与位置无关的注意力权重,记为p(word_weight|doc);计算每个词语在文档集合上的注意力权重,记为p(word_weight|corpus);以及联合p(word_weight|doc)和p(word_weight|corpus),并选取N个最终注意力权重最高的词语作为文档关键词。该方法利用BERT模型提取文档语义表示来计算词语注意力权重分布,最终实现关键词的抽取,兼顾词语频率信息的同时,有效地解决传统无监督算法忽略语义问题,提高了关键词抽取的准确率和召回率。

    基于BERT模型的文档关键词抽取方法及装置

    公开(公告)号:CN112883171A

    公开(公告)日:2021-06-01

    申请号:CN202110142917.5

    申请日:2021-02-02

    Abstract: 一种基于BERT模型的文档关键词抽取方法,其包括以下步骤:将文档集合中的每篇文档通过BERT模型进行编码,并提取BERT模型生成的文档语义对每个子词的注意力权重;将子词还原成词语,并将子词的注意力权重聚合为词语的注意力权重;将文档中不同位置的同一词语的注意力权重聚合为词语的与位置无关的注意力权重,记为p(word_weight|doc);计算每个词语在文档集合上的注意力权重,记为p(word_weight|corpus);以及联合p(word_weight|doc)和p(word_weight|corpus),并选取N个最终注意力权重最高的词语作为文档关键词。该方法利用BERT模型提取文档语义表示来计算词语注意力权重分布,最终实现关键词的抽取,兼顾词语频率信息的同时,有效地解决传统无监督算法忽略语义问题,提高了关键词抽取的准确率和召回率。

Patent Agency Ranking