-
公开(公告)号:CN104111973B
公开(公告)日:2017-10-27
申请号:CN201410269979.2
申请日:2014-06-17
Applicant: 中国科学院计算技术研究所
IPC: G06F17/30
Abstract: 本发明公开了本发明提供一种学者重名的消歧方法,包括:分类模型建立步骤和迭代消歧步骤;其中,分类模型建立步骤为基于异质学术网络数据,通过标注获取标注数据集,并基于标注数据集,构建文档对二元分类的训练数据集,并基于训练数据集采用分类算法进行二元分类模型训练,得到文档对二元分类模型;迭代消歧步骤为基于二元分类模型,采用迭代分类算法对需要消歧的数据集合进行迭代判别,得到最终对应真实学者的聚团,实现学者重名的消歧处理。本发明还公开了一种学者重名的消歧系统。
-
公开(公告)号:CN104111973A
公开(公告)日:2014-10-22
申请号:CN201410269979.2
申请日:2014-06-17
Applicant: 中国科学院计算技术研究所
IPC: G06F17/30
CPC classification number: G06F17/3071 , G06F17/30699
Abstract: 本发明公开了一种学者重名的消歧方法,包括:分类模型建立步骤和迭代消歧步骤;其中,分类模型建立步骤为基于异质学术网络数据,通过标注获取标注数据集,并基于标注数据集,构建文档对二元分类的训练数据集,并基于训练数据集采用分类算法进行二元分类模型训练,得到文档对二元分类模型;迭代消歧步骤为基于二元分类模型,采用迭代分类算法对需要消歧的数据集合进行迭代判别,得到最终对应真实学者的聚团,实现学者重名的消歧处理。本发明还公开了一种学者重名的消歧系统。
-