-
公开(公告)号:CN101819638A
公开(公告)日:2010-09-01
申请号:CN201010143777.5
申请日:2010-04-12
Applicant: 中国科学院计算技术研究所
IPC: G06K9/66
Abstract: 本发明提供一种色情检测模型建立方法,包括:从带有标注信息的样本音视频对象中提取视频特征和音频特征;根据所述标注信息,为所述样本音视频对象中的各类音频特征、视频特征分别训练模型,然后利用基于排序的加权平均融合方法计算所述模型间的融合参数;其中,所述的基于排序的加权平均融合方法遍历参数orness的取值区间,为所述参数orness的各个取值计算相应的融合参数,然后利用所述样本音视频对象计算各个融合参数的效果,选取效果最好的融合参数作为模型间的融合参数。本发明的色情检测方法与现有技术中的相关方法相比综合采用了视频特征与音频特征,检测准确率上有较大的提高。
-
公开(公告)号:CN101819638B
公开(公告)日:2012-07-11
申请号:CN201010143777.5
申请日:2010-04-12
Applicant: 中国科学院计算技术研究所
IPC: G06K9/66
Abstract: 本发明提供一种色情检测模型建立方法,包括:从带有标注信息的样本音视频对象中提取视频特征和音频特征;根据所述标注信息,为所述样本音视频对象中的各类音频特征、视频特征分别训练模型,然后利用基于排序的加权平均融合方法计算所述模型间的融合参数;其中,所述的基于排序的加权平均融合方法遍历参数orness的取值区间,为所述参数orness的各个取值计算相应的融合参数,然后利用所述样本音视频对象计算各个融合参数的效果,选取效果最好的融合参数作为模型间的融合参数。本发明的色情检测方法与现有技术中的相关方法相比综合采用了视频特征与音频特征,检测准确率上有较大的提高。
-
公开(公告)号:CN101661559B
公开(公告)日:2013-03-06
申请号:CN200910092710.0
申请日:2009-09-16
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种数字图像训练方法以及利用该训练方法的图像检测方法。其中该训练方法包括下列步骤:提取训练样本的图像特征;根据所述图像特征对所述训练样本进行聚类分析,将所述训练样本分为多个子类;对于每个子类,根据所述图像特征进行SVM训练,生成SVM模型。利用该训练方法所获得的多个SVM模型进行图像检测,检测准确率高、且具有较佳推广性和较高时效性。
-
公开(公告)号:CN101661559A
公开(公告)日:2010-03-03
申请号:CN200910092710.0
申请日:2009-09-16
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种数字图像训练方法以及利用该训练方法的图像检测方法。其中该训练方法包括下列步骤:提取训练样本的图像特征;根据所述图像特征对所述训练样本进行聚类分析,将所述训练样本分为多个子类;对于每个子类,根据所述图像特征进行SVM训练,生成SVM模型。利用该训练方法所获得的多个SVM模型进行图像检测,检测准确率高、且具有较佳推广性和较高时效性。
-
-
-