一种多模态数据处理方法及系统

    公开(公告)号:CN110503205A

    公开(公告)日:2019-11-26

    申请号:CN201910646750.9

    申请日:2019-07-17

    Abstract: 本发明提出一种多模态数据处理方法及系统,包括:获取多个多模态数据样本,并将多模态数据样本的质量评价作为特征,将多模态数据样本的模态组合作为标签;以特征为输入,并以标签为训练目标,训练多类分类器模型,得到模态选择模型;获取待处理多模态数据,将待处理多模态数据的特征输入模态选择模型,得到模态组合选择结果,通过将待处理多模态数据中除模态组合选择结果以外的置0,得到修改后的多模态数据;修改后的多模态数据输入指定的多模态机器学习任务模型,将多模态机器学习任务模型的输出结果作为待处理多模态数据的多模态数据处理结果。本发明可以提升低数据质量下的多模态机器学习模型性能。

    一种基于集成决策树的跌倒检测方法和系统

    公开(公告)号:CN110222708A

    公开(公告)日:2019-09-10

    申请号:CN201910354991.6

    申请日:2019-04-29

    Abstract: 本发明提出一种基于集成决策树的跌倒检测方法和系统,包括:对于标记为跌倒的第一加速度数据,取其中平方和最大的点,根据预设时间段范围取点左右的数据段作为原始集,对于标记为非跌倒的第二加速度数据,通过滑窗每次取预设时间段范围的数据段加入原始集,得到最终集,通过快速傅里叶变换提取最终集中各数据段的多维特征作为训练特征;创建多棵决策树,以训练特征作为输入特征,分别输入决策树以迭代训练各决策树,通过每一棵决策树去拟合上一棵决策树的残差,集合训练完成的决策树作为集成学习模型;获取待跌倒检测的第三加速度数据,利用滑窗的方法提取第三加速度数据的数据段作为检测数据,将检测数据输入至集成学习模型,得到跌倒检测结果。

Patent Agency Ranking