基于DMA-MaaS联邦学习平台的模型训练方法及系统

    公开(公告)号:CN116030317A

    公开(公告)日:2023-04-28

    申请号:CN202211716818.4

    申请日:2022-12-29

    Abstract: 本发明提出一种基于DMA‑MaaS联邦学习平台的模型训练方法和系统,包括:上传训练数据至联邦学习平台,联邦学习平台对训练数据进行检查并添加到数据池;上传任务至联邦学习平台,联邦学习平台将公开的任务加入到公共任务池以供其他用户端选择;通过选择自己发起的任务或在公共任务池中选择任务,判断选择的任务类型是否为联邦学习,若是则在用户端所在用户设备本地基于训练数据执行联邦学习,将学习得到的模型参数和结果返回到联邦学习平台进行参数聚合,直到聚合后的模型达到所需性能,否则联邦学习平台基于训练数据,在云端执行非联邦学习。本发明通过MaaS功能,缓解联邦平台用户侧的异质性,完成数据、任务、算法、模型的管理和创建发挥联邦模型价值。

Patent Agency Ranking