一种基于深度强化学习的集群任务调度方法及系统

    公开(公告)号:CN115904652A

    公开(公告)日:2023-04-04

    申请号:CN202211363177.9

    申请日:2022-11-02

    Abstract: 本发明提出一种基于深度强化学习的集群任务调度方法及系统,包括采用强化学习对异构计算资源平台中的任务进行实时调度,将计算平台中物理机组别信息、来自用户的任务需求信息以及任务执行成本作为强化学习的状态空间,将可用的物理机组集合作为强化学习的动作空间,通过深度Q网络方法,通过与异构计算平台环境信息的变化,学习适应动态变化的任务类型在异构资源物理机上的不同执行效率,资源利用效率即物理机执行任务时的资源使用占比;采用遗传算法,在前一步决策结果产生的物理机组中,根据不同物理机的资源使用情况,最大化资源利用效率,进行任务的进一步调度。

Patent Agency Ranking