一种社交网络账号映射模型训练方法及映射方法和系统

    公开(公告)号:CN104866558B

    公开(公告)日:2018-08-10

    申请号:CN201510252840.1

    申请日:2015-05-18

    Abstract: 本发明提供一种社交网络账号映射模型训练方法,包括:1)将映射关系已知的微博s账号集合中的任一个账号与微博t账号集合中的任一个账号进行两两组合构成训练集;2)对每一个账号组合提取账号组合特征向量,包括:该账号组合中两个账号各自的文本特征,两个账号在各自所属微博中的社交关系特征,以及两个账号的扩展共同邻居特征,扩展共同邻居是两个账号各自的邻居账号中,那些已知属于同一个自然人的邻居账号对;3)基于机器学习技术进行训练得到社交网络账号映射模型。本发明还提供了相应的社交网络账号映射方法及系统。本发明能够减少关系数据稀疏性对映射结果的不利影响,有效地提高社交网络账号映射的准确率。

    用于识别论坛用户马甲账号的方法和系统

    公开(公告)号:CN103729474B

    公开(公告)日:2017-07-21

    申请号:CN201410032746.0

    申请日:2014-01-23

    Abstract: 本发明提供了一种用于识别论坛用户马甲账号的方法。该方法基于训练集中各用户账号及每个文本的特征向量来训练分类模型,利用训练好的分类模型确定测试集中每个文本被分类到训练集中哪个用户账号,然后基于所述分类结果来识别马甲账号。该方法从论坛用户账号发言的文本数据中选取特征,通过挖掘账号的语言风格的相似性来判断属于同一人的多个账号间的关系,提高了识别马甲账号的概率。而且针对网络语言的语法不严谨,并且有许多的网络用语的特点,通过提取用户发言文本中有效的特征进行分析,规避了词库更新内容和速度跟不上网络语言的流行等问题,减少了维护分词词典的复杂操作,提高了马甲识别的准确率。

    一种社交网络账号映射模型训练方法及映射方法和系统

    公开(公告)号:CN104866558A

    公开(公告)日:2015-08-26

    申请号:CN201510252840.1

    申请日:2015-05-18

    CPC classification number: G06F17/30598 G06K9/66

    Abstract: 本发明提供一种社交网络账号映射模型训练方法,包括:1)将映射关系已知的微博s账号集合中的任一个账号与微博t账号集合中的任一个账号进行两两组合构成训练集;2)对每一个账号组合提取账号组合特征向量,包括:该账号组合中两个账号各自的文本特征,两个账号在各自所属微博中的社交关系特征,以及两个账号的扩展共同邻居特征,扩展共同邻居是两个账号各自的邻居账号中,那些已知属于同一个自然人的邻居账号对;3)基于机器学习技术进行训练得到社交网络账号映射模型。本发明还提供了相应的社交网络账号映射方法及系统。本发明能够减少关系数据稀疏性对映射结果的不利影响,有效地提高社交网络账号映射的准确率。

    用于识别论坛用户马甲账号的方法和系统

    公开(公告)号:CN103729474A

    公开(公告)日:2014-04-16

    申请号:CN201410032746.0

    申请日:2014-01-23

    CPC classification number: G06F17/30705 G06F17/30861

    Abstract: 本发明提供了一种用于识别论坛用户马甲账号的方法。该方法基于训练集中各用户账号及每个文本的特征向量来训练分类模型,利用训练好的分类模型确定测试集中每个文本被分类到训练集中哪个用户账号,然后基于所述分类结果来识别马甲账号。该方法从论坛用户账号发言的文本数据中选取特征,通过挖掘账号的语言风格的相似性来判断属于同一人的多个账号间的关系,提高了识别马甲账号的概率。而且针对网络语言的语法不严谨,并且有许多的网络用语的特点,通过提取用户发言文本中有效的特征进行分析,规避了词库更新内容和速度跟不上网络语言的流行等问题,减少了维护分词词典的复杂操作,提高了马甲识别的准确率。

Patent Agency Ranking