一种基于深度强化学习的无线网络分布式实时调度方法

    公开(公告)号:CN117336875A

    公开(公告)日:2024-01-02

    申请号:CN202311356766.9

    申请日:2023-10-19

    Abstract: 本发明提供了一种基于深度强化学习的无线网络分布式实时调度方法,无线网络包括预定范围内的多个节点,节点为接入点或者移动用户节点,方法包括:在每个节点中分别执行预设的分布式调度协议,基于所述协议为本节点的每条数据流建立一个调度组件以调度发送数据的数据流,其中,每个数据流的调度组件被配置为:为该数据流维护用于描述其流量特征的流量模型,并将最新的流量模型广播给无线网络中的各数据流的调度组件;监测每个时隙中该数据流对应的状态集合和历史观测信息;为该数据流部署专属的强化学习模型,其用于根据该数据流在当前时隙对应的状态集合和历史观测信息预测动作;和至少基于所述强化学习模型预测的动作确定当前时隙的实际动作。

Patent Agency Ranking