一种基于内容争议性的流行新闻预测方法和系统

    公开(公告)号:CN109977393B

    公开(公告)日:2021-09-03

    申请号:CN201711464946.3

    申请日:2017-12-28

    Abstract: 本发明涉及一种基于内容争议性的流行新闻预测方法,包括:争议性模式挖掘步骤,构建多任务学习的卷积神经网络模型,以对历史流行新闻进行模式的挖掘,得到该历史流行新闻的内容争议性模式的特征;流行新闻预测步骤,将新生新闻转化为词语字符的合集C,并将该合集C与该内容争议性模式进行匹配,得到该新生新闻的争议度得分P,以判断该新生新闻是否属于流行新闻;预测结果验证步骤,通过该新生新闻的实际流行性对该卷积神经网络模型进行验证,并使用验证结果对该卷积神经网络模型进行训练。本发明从争议性新闻本质的内容模式出发,能够实时准确地预测出潜在的流行新闻。

    一种基于内容争议性的流行新闻预测方法和系统

    公开(公告)号:CN109977393A

    公开(公告)日:2019-07-05

    申请号:CN201711464946.3

    申请日:2017-12-28

    Abstract: 本发明涉及一种基于内容争议性的流行新闻预测方法,包括:争议性模式挖掘步骤,构建多任务学习的卷积神经网络模型,以对历史流行新闻进行模式的挖掘,得到该历史流行新闻的内容争议性模式的特征;流行新闻预测步骤,将新生新闻转化为词语字符的合集C,并将该合集C与该内容争议性模式进行匹配,得到该新生新闻的争议度得分P,以判断该新生新闻是否属于流行新闻;预测结果验证步骤,通过该新生新闻的实际流行性对该卷积神经网络模型进行验证,并使用验证结果对该卷积神经网络模型进行训练。本发明从争议性新闻本质的内容模式出发,能够实时准确地预测出潜在的流行新闻。

Patent Agency Ranking