-
公开(公告)号:CN117592524A
公开(公告)日:2024-02-23
申请号:CN202311359769.8
申请日:2023-10-19
Applicant: 中国科学院计算技术研究所
IPC: G06N3/0495 , G06N3/063 , G06N3/08
Abstract: 本发明提供一种基于GPU的稀疏深度神经网络的推理加速方法,用于加速所述稀疏深度神经网络对待处理数据的推理过程,所述GPU包括全局内存,所述稀疏深度神经网络包括多层网络层,所述全局内存中存储来自CPU传输的所述稀疏深度神经网络的网络层权重参数,所述方法包括:S1、基于所述全局内存大小、所述待处理数据整体所需内存大小和单层网络层权重参数所需大小,按照预设的分块规则对所述待处理数据进行分块处理得到分块数据,以使每个分块数据均能被完整的存储于全局内存中;S2、将每个分块数据与所述全局内存中存储的网络层权重参数进行计算,直至每个分块数据与所述稀疏深度神经网络的每一网络层权重参数完成计算。
-
公开(公告)号:CN114417211A
公开(公告)日:2022-04-29
申请号:CN202111319929.7
申请日:2021-11-09
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/958 , G06F16/9536 , G06Q50/00
Abstract: 本发明公开了一种面向社交平台的数据采集方法,包括:1)在主机上通过模拟用户发出的浏览器访问请求获取社交平台上相关页面的Web页面数据;2)将真机或模拟器连接主机,模拟用户发出的APP访问请求,在主机上设置网络代理,拦截APP访问请求获得相应的HTTP/HTTPS请求,获取社交平台上相关页面的APP页面数据;3)将Web页面数据和APP页面数据分别进行页面解析、数据对齐融合,输出并存入数据库。本发明公开了面向社交平台的数据采集系统,包括:Web数据采集模块、APP数据采集模块和双终端数据对齐融合模块。本发明的方法与系统同时适用于Web端和APP端的社交平台数据采集,能够获得全量的社交平台数据。
-
公开(公告)号:CN110442421B
公开(公告)日:2022-04-01
申请号:CN201910578655.X
申请日:2019-06-28
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F9/455
Abstract: 本发明提出一种基于Kubernetes的通用服务转换方法和系统,包括:构建由多个节点构成的Kubernetes系统,其中节点的Pod设有用于提供服务的原服务容器,并通过在Pod中新添加容器的方式或通过原容器镜像的方式,在节点的Pod中加入转换程序;每当发生一次服务调用请求,转换容器或程序根据配置,将服务调用请求转换为原服务执行请求,通过调用原服务容器,提供相对应的服务,并转换成该服务调用请求所对应的服务结果。本发明可解决Kubernetes服务与调用者之间接口不一致的问题;并可减少转换程序与服务程序、调用程序之间的网络开销,同时结合Kubernetes特性,服务程序重新部署时,转换程序自动跟随部署。
-
公开(公告)号:CN109829089A
公开(公告)日:2019-05-31
申请号:CN201811516557.5
申请日:2018-12-12
Applicant: 中国科学院计算技术研究所
IPC: G06F16/906 , G06F16/958 , G06Q50/00
Abstract: 本发明涉及一种基于关联图谱的社交网络用户异常检测方法和系统,针对现有事件可视化展示技术的不足以及事件、用户、事件主题等多种实体关联性较弱不易于进行用户异常检测,提出一种基于微博平台的事件可视化方法以及事件、用户、事件主题等多种实体构建异构关联网络图谱进行用户异常检测;在不缺失事件信息的同时,让使用者更加全面、深入地了解整个事件的发展演变过程,并根据已有的异构关联网络图谱更加直观的进行用户异常检测。
-
公开(公告)号:CN103778200B
公开(公告)日:2017-08-08
申请号:CN201410010836.X
申请日:2014-01-09
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明公开了一种报文信息源抽取方法及其系统,该方法通过匹配信息源抽取规则库的关键词提取报文中的信息源,并匹配信息源抽取规则库的规则判断信息源类型,该方法包括:报文解析步骤和信息源抽取步骤,报文解析步骤用于根据输入的文本,提取文本中的字符,并对字符进行断句处理为不同分句,信息源抽取步骤为根据信息源抽取规则库对分句进行关键词匹配,对分句抽取有用要素序列,并在有用要素序列上,提取信息源,并通过匹配信息源抽取规则库的规则判断信息源类型。
-
公开(公告)号:CN116955763A
公开(公告)日:2023-10-27
申请号:CN202210360142.3
申请日:2022-04-06
Applicant: 腾讯科技(深圳)有限公司 , 中国科学院计算技术研究所
IPC: G06F16/9535 , G06F18/213 , G06F18/25 , G06N20/00
Abstract: 本申请公开了一种内容推荐方法、装置、计算机设备及计算机可读存储介质,方法通过获取目标应用中目标对象的第一历史行为数据,并对第一历史行为数据进行特征提取得到行为特征;获取目标对象的关联数据并从关联数据中提取提示信息,得到提示特征;对提示特征与行为特征进行拼接,得到拼接特征;将拼接特征输入至预训练后的推荐模型中,得到输出的对象特征;基于对象特征在目标应用中对目标对象进行内容推荐。该方法可以有效提升内容推荐的准确性。
-
公开(公告)号:CN113449601B
公开(公告)日:2023-05-16
申请号:CN202110591209.X
申请日:2021-05-28
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06V40/10 , G06V20/40 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明提出一种基于渐进性平滑损失的行人重识别模型训练方法,包括:获取训练样本数据;其中,所述训练样本数据包括多个包含行人的视频;将所述训练样本数据输入至初始模型中,得到对应各所述包含行人的视频的帧级别特征和视频级别特征;分别基于所述帧级别特征和所述视频级别特征计算第一损失和第二损失;基于所述第一损失和所述第二损失对所述初始模型的模型参数进行优化,得到行人重识别模型。
-
公开(公告)号:CN115393697A
公开(公告)日:2022-11-25
申请号:CN202210895693.X
申请日:2022-07-28
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06V20/00 , G06V10/26 , G06V10/30 , G06V10/40 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提出一种基于多元特征融合分割的图片伪造检测方法和系统,通过提取图像中伪造区域的光照梯度、噪声分布、压缩一致性特征后,对其进行加权融合成一个新的综合特征,送入到专用的分割神经网络判断图像是否是伪造的,并标记出伪造区域,同时将多元融合特征与网络分割结果结合,给出伪造检测的解释性展示,在提高传统方法的准确率和普适性的同时,弥补了深度学习方法可解释性较低的不足。
-
公开(公告)号:CN113343810A
公开(公告)日:2021-09-03
申请号:CN202110590381.3
申请日:2021-05-28
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
Abstract: 本发明提出一种基于时序多样性与相关性的行人重识别模型训练方法,包括以下步骤:获取训练样本数据,所述训练样本数据包括多个包含行人的视频序列;将所述训练样本数据输入至初始模型中采样各所述包含行人的视频序列的多帧视频,并且提取所述多帧视频的帧级别特征,聚合所述帧级别特征得到视频级别特征;基于所述视频级别特征计算视频级别损失;基于所述视频级别损失对所述初始模型的模型参数进行优化,得到行人重识别模型。
-
公开(公告)号:CN110287314B
公开(公告)日:2021-08-06
申请号:CN201910418900.0
申请日:2019-05-20
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明涉及一种基于无监督聚类的长文本可信度评估方法,包括:以已知长文本获取训练数据,提取该训练数据的训练特征以构建训练特征向量集,对该训练特征向量集进行无监督聚类,得到多个训练类心;以待评估长文本获取评估数据,提取该评估数据的评估特征向量;获取该评估特征向量相对该训练类心的评估值,并以该评估值得到该待评估长文本的可信度。本发明通过无监督聚类对长文本进行可信度评估,在实施过程中不需要标注数据,节省了人力、物力与时间,避免了数据中标签稀疏带来的困扰;提取了长文本的文本特征,对于可信度评估任务更加适用,使用该模型得到的文本的可信度更具有可解释性,同时在平台之间可以迁移。
-
-
-
-
-
-
-
-
-