-
公开(公告)号:CN118397440A
公开(公告)日:2024-07-26
申请号:CN202410566933.0
申请日:2024-05-09
Applicant: 中国科学院计算技术研究所
IPC: G06V20/00 , G06V10/774 , G06V10/44 , G06V10/74 , G06V10/762
Abstract: 本发明提供了一种基于无监督域自适应的深度伪造检测方法,包括:通过源域的有标签数据训练一深度伪造检测模型,深度伪造检测模型至少包括有特征提取器;通过特征提取器,提取目标域的无标签数据的特征,并对无标签数据的特征进行聚类得到聚类结果;将目标域的聚类结果与源域的已知深度伪造类别进行匹配,为目标域的数据生成伪标签,伪标签包括已知深度伪造类别伪标签和未知深度伪造类别伪标签。通过源域的有标签数据和目标域的伪标签数据,对深度伪造检测模型进行再训练。本发明还提供一种系统、存储介质及电子设备。借此,本发明能够在不需要目标域标签的情况下,识别出目标域中的已知和未知的深度伪造类别,从而提高了模型的泛化能力和鲁棒性。