-
公开(公告)号:CN117726878A
公开(公告)日:2024-03-19
申请号:CN202410027066.3
申请日:2024-01-08
Applicant: 中国科学院计算技术研究所
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V20/00 , G06N3/0464 , G06N3/08
Abstract: 本发明提供一种用于全景图像目标检测模型的训练方法以及目标检测方法,目标检测模型采用经过全景数据适配的RetinaNet检测模型;训练方法包括:将训练样本中的全景图像输入至目标检测模型,输出多个预测框及其参数;根据训练样本中全景图像对应的真实框及其参数,计算预测框与真实框的交并比,作为第一交并比;其中,预测框与真实框为球面框;将第一交并比大于第一设定阈值的预测框作为正样本,并基于正样本对应的交并比计算目标检测模型的损失函数;根据损失函数更新目标检测模型的参数,直至目标检测模型收敛。本发明的训练过程可以快速分配正负样本进而提高模型的训练速度和训练后模型的性能。