-
公开(公告)号:CN115731176A
公开(公告)日:2023-03-03
申请号:CN202211435875.5
申请日:2022-11-16
Applicant: 中国科学院苏州生物医学工程技术研究所 , 苏州大学附属儿童医院
IPC: G06T7/00 , G06V10/40 , G06V10/771 , G06V10/80 , G06V10/764 , G06V10/77 , G16H50/20
Abstract: 本发明公开了一种基于人机特征融合的胶质瘤智能分级方法、系统及设备,该方法包括以下步骤:S1、获取胶质瘤患者的多序列磁共振图像;S2、对多序列磁共振图像进行预处理;S3、进行影像组学特征提取和临床专家评分特征提取;S4、进行特征选择与特征融合;S5、将融合特征输入机器学习分类模型中,得到胶质瘤图像分级结果。本发明利用机器学习分类模型通过影像组学特征和临床专家评分特征的融合特征进行胶质瘤图像的智能分级,可将专家的知识和经验融入分类模型中,能够提升胶质瘤自动分级的准确性,在胶质瘤无创分析、治疗方案制定和预后评估方面具有潜在的应用价值。
-
公开(公告)号:CN114445352A
公开(公告)日:2022-05-06
申请号:CN202210016162.9
申请日:2022-01-07
Applicant: 中国科学院苏州生物医学工程技术研究所 , 苏州大学附属儿童医院
Abstract: 本发明公开了一种腹部DR图像处理方法及系统,该方法包括以下步骤:1)图像预处理:对腹部DR图像进行ROI标注、二值化处理、重采样处理和边界生成获得边界二值图像;2)统计形状分析:对步骤1)获得的边界二值图像进行中心线提取、目标宽度计算、统计形状计算,得到若干个统计形状参数;3)图像分类:基于步骤2)得到的干个统计形状参数进行图像分类。本发明提出了一种结基于统计形状的DR图像肠道形态分析方法及系统,相比于现有的几何形态分析方案,本发明对于肠道形态变化、肠道重叠现象、患者体位变化等特点肠道DR图像的具有更好的稳定性,本发明获得的统计形态参数用于图像分类具有更好的分类准确性。
-
公开(公告)号:CN113052849B
公开(公告)日:2024-01-26
申请号:CN202110409678.5
申请日:2021-04-16
Applicant: 中国科学院苏州生物医学工程技术研究所 , 苏州科技城医院
IPC: G06T7/10 , G06T3/60 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种腹部组织图像自动分割方法及系统,该方法包括以下步骤:1)构建第一训练数据集;2)利用所述第一训练数据集对3D U‑Net网络进行训练,得到腹部组织自动分割模型;3)构建用于肿瘤分割任务的第二训练数据集;4)利用所述第二训练数据集对DeepLab V3+网络进行训练,得到肿瘤自动分割模型;5)将所述腹部组织自动分割模型和肿瘤自动分割模型级联,得到腹部组织自动分割模型;6)将待分割的腹部扫描图像输入腹部组织自动分割模型,自动得到腹部组织分割图像和肿瘤分割图像。本发明的腹部组织图像自动分割方法能够对形态多变的腹部组织和肿瘤进行分割,在低对比度和边缘模糊的情况下取得良好的分割精度。
-
公开(公告)号:CN115829986A
公开(公告)日:2023-03-21
申请号:CN202211610437.8
申请日:2022-12-14
Applicant: 中国科学院苏州生物医学工程技术研究所 , 济南国科医工科技发展有限公司
IPC: G06T7/00 , G06V10/26 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了一种基于卷积重参数化的医学图像分割方法、系统及设备,该方法包括以下步骤:S1、采集多模态医学图像;S2、对多模态医学图像进行预处理,构建训练数据集;S3、构建基于卷积重参数化的医学图像分割模型;S4、采用训练数据集对医学图像分割模型进行训练;S5、将待分割的医学图像输入训练好的医学图像分割模型中,得到分割结果。本发明提供的基于卷积重参数化的医学图像分割方法及系统,可以增强分割网络模型中卷积核的骨架参数,从而提高分割网络的表达能力。本发明能够帮助提升胶质瘤分割的准确性,在胶质瘤形态学分析、高低级别鉴定和预后评估方面具有潜在的应用价值。
-
公开(公告)号:CN109345523B
公开(公告)日:2022-08-16
申请号:CN201811118372.9
申请日:2018-09-21
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种表面缺陷检测和三维建模方法,包括以下步骤:1)原始表面点云数据采集,2)原始缺陷点云数据缺陷分割,得到无缺陷部位和缺陷部位;3)无缺陷部位配准,获取缺陷模型;4)缺陷模型顶部分割;5)缺陷模型顶部杂散点滤波;6)缺陷模型平滑;7)曲面建模,将点云缺陷模型进行表面重建,得到缺陷区域的曲面模型。本发明的表面缺陷检测和三维建模方法,能实现待检测物体表面缺陷的自动检测和三维模型自动构建。可用于实现工业表面自动化修复,可以应用于人体表面皮肤组织损伤部位建模,为皮肤三维打印提供三维模型。
-
公开(公告)号:CN113763441A
公开(公告)日:2021-12-07
申请号:CN202110984076.2
申请日:2021-08-25
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种无监督学习的医学图像配准方法及系统,该方法包括以下步骤:1)构建深度学习配准网络,其包括空间自注意力配准网络和多分辨率图像配准网络;2)将固定图像F和待配准的浮动图像M输入深度学习配准网络中,得到F和M之间的形变场3)基于形变场采用三线性插值对M进行空间变换,得到最终的配准结果将与F的结构信息相似测度、平滑约束项和雅可比负值折叠罚项共同作为深度学习配准网络的损失函数L来引导网络参数的优化。本发明无需预先准备的分割标签或形变场标签,可对不同模态中的大形变区域得到较好的配准精度,且本发明的配准速度快、可达到实时性效果。
-
公开(公告)号:CN111951252A
公开(公告)日:2020-11-17
申请号:CN202010826210.1
申请日:2020-08-17
Applicant: 中国科学院苏州生物医学工程技术研究所 , 苏州市第五人民医院
Abstract: 本发明公开了一种多时序图像处理方法、电子设备及存储介质,该方法包括以下步骤:1)多时序感兴趣区域分割;2)感兴趣区域综合特征提取;3)多时序图像特征提取;4)图像集处理:5)将所述步骤4)得到的特征矩阵M进行特征筛选后通过分类器进行分类,获得图像处理结果。本发明的多时序图像处理方法,能同时实现对多个病人的多时序图像分类,从多时相特征中能得到更加丰富的影像学定量特征;本发明通过构建多时相影像特征及其不同时相之间的特征差异,共同构成特征集合,可以更加有效的反映不同组织的影像学表现,利于得到更加丰富的影像学信息。
-
公开(公告)号:CN110176073A
公开(公告)日:2019-08-27
申请号:CN201910417011.2
申请日:2019-05-20
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明公开了一种三维缺陷模型自动建模和自适应分层方法,包括以下步骤:1)获取缺陷区域的点云数据;2)建立缺陷区域模型;3)获取最优分层方向;4)根据建立的缺陷区域模型的形状及表面凹凸状况进行自适应变高分层。本发明的三维缺陷模型自动建模和自适应分层方法,能根据提取待修复模型的集合特性,对使用待修复区域模型进行“个性化”分层方法,能根据物体形状及表面凹凸状况进行自适应变高分层,能降低分层所带来的表面精度误差,提高了构建的模型的整体精度。
-
公开(公告)号:CN114254698B
公开(公告)日:2024-10-22
申请号:CN202111485510.9
申请日:2021-12-07
Applicant: 苏州国科医工科技发展(集团)有限公司 , 中国科学院苏州生物医学工程技术研究所
IPC: G06V10/764 , G06N3/09 , G06V10/82 , G06N3/0499
Abstract: 本发明公开了一种不平衡数据与图像处理方法、系统及计算机设备,该包括以下步骤:1)对不平衡数据集O进行预处理;2)使用基于豪斯多夫距离的最大分布算法确定RBF神经网络数据生成模型的参数;3)构建RBF神经网络数据生成模型;4)使用构建的RBF神经网络数据生成模型结合mvnrnd函数生成样本集合S;5)将生成的样本集合S填充到原始不平衡数据集O中,获得处理后的平衡数据集Os,Os=O∪S。本发明提供的不平衡数据与图像处理方法,能够处理缺失值和不同类型的属性,自适应地学习原始不平衡数据的类内和类间分布,自动按类别生成数据扩充原始数据中的少数类,从而能有效改善数据的不平衡性,提高数据分析的准确性。
-
公开(公告)号:CN111951252B
公开(公告)日:2024-01-23
申请号:CN202010826210.1
申请日:2020-08-17
Applicant: 中国科学院苏州生物医学工程技术研究所 , 苏州市第五人民医院
Abstract: 本发明公开了一种多时序图像处理方法、电子设备及存储介质,该方法包括以下步骤:1)多时序感兴趣区域分割;2)感兴趣区域综合特征提取;3)多时序图像特征提取;4)图像集处理:5)将所述步骤4)得到的特征矩阵M进行特征筛选后通过分类器进行分类,获得图像处理结果。本发明的多时序图像处理方法,能同时实现对多个病人的多时序图像分类,从多时相特征中能得到更加丰富的影像学定量特征;本发明通过构建多时相影像特征及其不同时相之间的特征差异,共同构成特征集合,可以更加有效的反映不同组织的影像学表现,利于得到更加丰富的影像学信息。
-
-
-
-
-
-
-
-
-