-
公开(公告)号:CN103910532B
公开(公告)日:2015-12-23
申请号:CN201310004053.6
申请日:2013-01-05
Applicant: 中国科学院宁波材料技术与工程研究所
IPC: G21C13/08 , C04B35/80 , C04B35/84 , C04B35/622 , G21B1/13
CPC classification number: Y02E30/128 , Y02E30/40
Abstract: 本发明提供了一种涂层无机纤维增韧MAX相陶瓷复合材料及其制备方法。该复合材料以MAX相陶瓷材料为基体,涂层无机纤维为增韧相,按照体积百分比计,涂层无机纤维占0.5%~90%;所述的涂层无机纤维充分分散在基体中;所述的涂层无机纤维是表面包覆着涂层的无机纤维。与现有技术相比,本发明的复合材料不仅能够有效抑制无机纤维与MAX相陶瓷之间的界面反应并能有效调控二者之间热膨胀系数和弹性模量的匹配程度,实现MAX相陶瓷复合材料断裂韧性和耐高温性能的有效提高,从根本上解决MAX相陶瓷存在的脆性较大,使用可靠性不足的问题,在民用、航空、航天、核工业等高技术领域具有潜在的应用前景,尤其适用于裂变和聚变堆核电站内壁结构材料。
-
公开(公告)号:CN105823908B
公开(公告)日:2018-09-11
申请号:CN201610408612.3
申请日:2016-06-08
Applicant: 中国科学院宁波材料技术与工程研究所 , 兰州大学
IPC: G01Q30/20
Abstract: 本发明公开了一种全温区热电两场透射电子显微镜原位样品杆,包括DEWAR固定圈、DEWAR外罐上部、DEWAR外罐下部、导向销、样品杆外壳、密封圈、固定件和样品杆头、DEWAR內罐上部、DEWAR內罐下部、加热模块、固定板、真空电学接头、导线孔、样品杆内杆、PCB转接板,原位测试芯片。本发明在大温区设计的基础上,可以直接在样品处添加电学信号进行样品材料热电性能研究。采用液氮实现低温及高温冷却功能,快速制冷降温;样品杆头采用可拆卸方式,可以更换扩展功能,实现单一低温、高温或同时实现全温区;加热模块采用芯片微区加热方式,降低热接触,减小热漂移。使用加大工作微区设计,测温元件采用电阻信号变化检测,可以实现实时准确的温度检测。
-
公开(公告)号:CN105823908A
公开(公告)日:2016-08-03
申请号:CN201610408612.3
申请日:2016-06-08
Applicant: 中国科学院宁波材料技术与工程研究所 , 兰州大学
IPC: G01Q30/20
CPC classification number: G01Q30/20
Abstract: 本发明公开了一种全温区热电两场透射电子显微镜原位样品杆,包括DEWAR固定圈、DEWAR外罐上部、DEWAR外罐下部、导向销、样品杆外壳、密封圈、固定件和样品杆头、DEWAR內罐上部、DEWAR內罐下部、加热模块、固定板、真空电学接头、导线孔、样品杆内杆、PCB转接板,原位测试芯片。本发明在大温区设计的基础上,可以直接在样品处添加电学信号进行样品材料热电性能研究。采用液氮实现低温及高温冷却功能,快速制冷降温;样品杆头采用可拆卸方式,可以更换扩展功能,实现单一低温、高温或同时实现全温区;加热模块采用芯片微区加热方式,降低热接触,减小热漂移。使用加大工作微区设计,测温元件采用电阻信号变化检测,可以实现实时准确的温度检测。
-
公开(公告)号:CN103022434B
公开(公告)日:2016-05-11
申请号:CN201210486462.X
申请日:2012-11-23
Applicant: 中国科学院宁波材料技术与工程研究所
Abstract: 本发明提供了一种前驱体陶瓷与碳纳米管复合材料,该复合材料由碳纳米管和SiCN陶瓷、SiCO陶瓷、包含掺杂元素的SiCN陶瓷、包含掺杂元素的SiCO陶瓷中的一种前驱体陶瓷组成,并且碳纳米管均匀分散在前驱体陶瓷中,构成了三维连接网络,在增强增韧的同时显著提高了前驱体陶瓷材料的电导率,从而提高了前驱体陶瓷材料的力学性能、高温性能及电学性能。本发明还提出一种采用未经任何前期预处理的碳纳米管或碳纳米纤维,通过液相分散、混合蒸馏、升温交联、高温热解的过程制得本发明前驱体陶瓷碳纳米管复合材料的方法,利用该方法在纳米三维尺度上能够实现碳纳米管或碳纳米纤维在前驱体陶瓷颗粒中的均匀分散,使碳纳米管或碳纳米纤维之间无团聚现象发生。
-
公开(公告)号:CN103910532A
公开(公告)日:2014-07-09
申请号:CN201310004053.6
申请日:2013-01-05
Applicant: 中国科学院宁波材料技术与工程研究所
IPC: C04B35/80 , C04B35/84 , C04B35/622 , G21C13/08 , G21B1/13
CPC classification number: Y02E30/128 , Y02E30/40
Abstract: 本发明提供了一种涂层无机纤维增韧MAX相陶瓷复合材料及其制备方法。该复合材料以MAX相陶瓷材料为基体,涂层无机纤维为增韧相,按照体积百分比计,涂层无机纤维占0.5%~90%;所述的涂层无机纤维充分分散在基体中;所述的涂层无机纤维是表面包覆着涂层的无机纤维。与现有技术相比,本发明的复合材料不仅能够有效抑制无机纤维与MAX相陶瓷之间的界面反应并能有效调控二者之间热膨胀系数和弹性模量的匹配程度,实现MAX相陶瓷复合材料断裂韧性和耐高温性能的有效提高,从根本上解决MAX相陶瓷存在的脆性较大,使用可靠性不足的问题,在民用、航空、航天、核工业等高技术领域具有潜在的应用前景,尤其适用于裂变和聚变堆核电站内壁结构材料。
-
公开(公告)号:CN103022434A
公开(公告)日:2013-04-03
申请号:CN201210486462.X
申请日:2012-11-23
Applicant: 中国科学院宁波材料技术与工程研究所
Abstract: 本发明提供了一种前驱体陶瓷与碳纳米管复合材料,该复合材料由碳纳米管和SiCN陶瓷、SiCO陶瓷、包含掺杂元素的SiCN陶瓷、包含掺杂元素的SiCO陶瓷中的一种前驱体陶瓷组成,并且碳纳米管均匀分散在前驱体陶瓷中,构成了三维连接网络,在增强增韧的同时显著提高了前驱体陶瓷材料的电导率,从而提高了前驱体陶瓷材料的力学性能、高温性能及电学性能。本发明还提出一种采用未经任何前期预处理的碳纳米管或碳纳米纤维,通过液相分散、混合蒸馏、升温交联、高温热解的过程制得本发明前驱体陶瓷碳纳米管复合材料的方法,利用该方法在纳米三维尺度上能够实现碳纳米管或碳纳米纤维在前驱体陶瓷颗粒中的均匀分散,使碳纳米管或碳纳米纤维之间无团聚现象发生。
-
公开(公告)号:CN205691611U
公开(公告)日:2016-11-16
申请号:CN201620561112.9
申请日:2016-06-08
Applicant: 中国科学院宁波材料技术与工程研究所 , 兰州大学
IPC: G01Q30/20
Abstract: 本实用新型公开了一种全温区热电两场透射电子显微镜原位样品杆,包括DEWAR固定圈、DEWAR外罐上部、DEWAR外罐下部、导向销、样品杆外壳、密封圈、固定件和样品杆头、DEWAR內罐上部、DEWAR內罐下部、加热模块、固定板、真空电学接头、导线孔、样品杆内杆、PCB转接板,原位测试芯片。本实用新型在大温区设计的基础上,可以直接在样品处添加电学信号进行样品材料热电性能研究。采用液氮实现低温及高温冷却功能,快速制冷降温;样品杆头采用可拆卸方式,可以更换扩展功能,实现单一低温、高温或同时实现全温区;加热模块采用芯片微区加热方式,降低热接触,减小热漂移。使用加大工作微区设计,测温元件采用电阻信号变化检测,可以实现实时准确的温度检测。
-
-
-
-
-
-