-
公开(公告)号:CN115457932B
公开(公告)日:2024-10-29
申请号:CN202211077901.1
申请日:2022-09-05
Applicant: 中国科学院声学研究所
Abstract: 本申请提供了一种韵律边界预测方法及系统,包括:使用标注文本对已有的韵律模型进行训练,得到K个低精度韵律模型;使用K个低精度韵律模型,对无标注文本进行标注,得到K组低精度弱标签;使用HMM增强模型,从K组所述低精度弱标签中,推断增强标签;使用无标注数据集与所述增强标签对基于Bert的韵律边界预测模型进行模型训练,将待预测的无标注数据输入所述基于Bert的韵律边界预测模型,得到对应的预测韵律边界标签。本申请仅利用少量标注数据和大量无标注数据,就可以完成对基于Bert的韵律边界预测模型的高质量训练,减少因数据过少的过拟合问题。
-
公开(公告)号:CN115457932A
公开(公告)日:2022-12-09
申请号:CN202211077901.1
申请日:2022-09-05
Applicant: 中国科学院声学研究所
Abstract: 本申请提供了一种韵律边界预测方法及系统,包括:使用标注文本对已有的韵律模型进行训练,得到K个低精度韵律模型;使用K个低精度韵律模型,对无标注文本进行标注,得到K组低精度弱标签;使用HMM增强模型,从K组所述低精度弱标签中,推断增强标签;使用无标注数据集与所述增强标签对基于Bert的韵律边界预测模型进行模型训练,将待预测的无标注数据输入所述基于Bert的韵律边界预测模型,得到对应的预测韵律边界标签。本申请仅利用少量标注数据和大量无标注数据,就可以完成对基于Bert的韵律边界预测模型的高质量训练,减少因数据过少的过拟合问题。
-