-
公开(公告)号:CN112929380B
公开(公告)日:2022-04-15
申请号:CN202110198784.3
申请日:2021-02-22
Applicant: 中国科学院信息工程研究所
Abstract: 本发明公开了一种结合元学习与时空特征融合的木马通信检测方法及系统。本方法为:1)构建一元学习网络,将木马流量样本输入元学习网络的嵌入部分,得到样本的特征向量;2)挑选出C个类别,并为每个类别挑选出K个样本并划分为支持集和查询集;3)元学习网络的关系网络将每个元任务对应的支持集中的同一类别样本融合为一条向量,将该条向量作为对应类别的代表向量;4)将每个类别的代表向量与查询集中该类别每一特征向量依次成对输入两个全连接层,得到关系得分,然后根据该关系得分计算损失值,迭代优化元学习网络;5)对于一待识别的流量数据,将其输入训练后的所述元学习网络,根据所得关系得分确定该流量数据对应的类别。
-
公开(公告)号:CN112688928A
公开(公告)日:2021-04-20
申请号:CN202011508537.0
申请日:2020-12-18
Applicant: 中国科学院信息工程研究所
Abstract: 本发明公开一种结合自编码器和WGAN的网络攻击流量数据增强方法及系统,涉及网络空间安全领域、通信网络异常流量检测和人工智能领域,针对网络攻击流量检测模型学习、训练、优化的需要,结合自编码器和生成式对抗网络构建改进的生成对抗网络,利用生成对抗网络学习数据分布的特点,生成数据分布、特征更符合真实流量特点的网络攻击流量数据来辅助网络攻击检测。
-
公开(公告)号:CN112929380A
公开(公告)日:2021-06-08
申请号:CN202110198784.3
申请日:2021-02-22
Applicant: 中国科学院信息工程研究所
Abstract: 本发明公开了一种结合元学习与时空特征融合的木马通信检测方法及系统。本方法为:1)构建一元学习网络,将木马流量样本输入元学习网络的嵌入部分,得到样本的特征向量;2)挑选出C个类别,并为每个类别挑选出K个样本并划分为支持集和查询集;3)元学习网络的关系网络将每个元任务对应的支持集中的同一类别样本融合为一条向量,将该条向量作为对应类别的代表向量;4)将每个类别的代表向量与查询集中该类别每一特征向量依次成对输入两个全连接层,得到关系得分,然后根据该关系得分计算损失值,迭代优化元学习网络;5)对于一待识别的流量数据,将其输入训练后的所述元学习网络,根据所得关系得分确定该流量数据对应的类别。
-
-