一种基于三分类器协同训练学习的网络协议识别方法及系统

    公开(公告)号:CN104270392B

    公开(公告)日:2017-09-26

    申请号:CN201410575510.1

    申请日:2014-10-24

    Abstract: 本发明涉及一种基于三分类器协同训练学习的网络协议识别方法及系统:对网络原始流量进行IP重组和TCP流还原,将网络数据由包为单位规约为以流为单位;提取每条单向流的特征信息并向量化,构建特征矩阵;使用少量标记样本构建三分类器协同训练分类器;判定是否已有所分析协议的分类模型,如果没有则先利用三分类器协同训练学习方法构建协议分类器,否则对数据包的协议属性进行判别;利用基于J48的三分类器协同训练学习算法进行训练并得到所分析协议的分类模型;对未标识的网络数据包进行协议类别判定,输出结果为两类:一类是属于目标协议的网络数据包,另一类是非目标协议的网络数据包。本发明保证很高的识别准确率和召回率。

    一种基于三分类器协同训练学习的网络协议识别方法及系统

    公开(公告)号:CN104270392A

    公开(公告)日:2015-01-07

    申请号:CN201410575510.1

    申请日:2014-10-24

    CPC classification number: H04L43/026 H04L43/18 H04L69/22

    Abstract: 本发明涉及一种基于三分类器协同训练学习的网络协议识别方法及系统:对网络原始流量进行IP重组和TCP流还原,将网络数据由包为单位规约为以流为单位;提取每条单向流的特征信息并向量化,构建特征矩阵;使用少量标记样本构建三分类器协同训练分类器;判定是否已有所分析协议的分类模型,如果没有则先利用三分类器协同训练学习方法构建协议分类器,否则对数据包的协议属性进行判别;利用基于J48的三分类器协同训练学习算法进行训练并得到所分析协议的分类模型;对未标识的网络数据包进行协议类别判定,输出结果为两类:一类是属于目标协议的网络数据包,另一类是非目标协议的网络数据包。本发明保证很高的识别准确率和召回率。

Patent Agency Ranking