基于高斯约束注意力机制网络的场景文字识别方法及系统

    公开(公告)号:CN112070114B

    公开(公告)日:2023-05-16

    申请号:CN202010767079.6

    申请日:2020-08-03

    Abstract: 本发明提出一种基于高斯约束注意力机制网络的场景文字识别方法及系统,涉及图像信息识别领域,通过提取待识别图片的视觉特征,得到二维特征图;将二维特征图转化为一维特征序列,根据该一维特征序列提取全局语义信息;将全局语义信息输入至第一个时间步中初始化解码隐状态,并在每个时间步中根据隐状态和二维特征图计算原始的注意力权重,利用该权重加权求和得到原始加权特征向量;根据隐状态和原始加权特征向量构造二维高斯分布掩膜,将该掩膜与原始的注意力权重相乘,得到矫正的注意力权重,根据该权重得到矫正后加权特征向量;将原始加权特征向量和矫正后加权特征向量融合一起来预测待识别图片的字符,从而能够解决注意力弥散的情况。

    基于全卷积角点修正网络的多向场景文字检测方法及装置

    公开(公告)号:CN113095319B

    公开(公告)日:2022-11-15

    申请号:CN202110235490.3

    申请日:2021-03-03

    Abstract: 本发明公开了一种基于全卷积角点修正网络的多向场景文字检测方法及装置,包括:依据图片的视觉特征,获取融合特征;根据融合特征,分别得到初始特征、初始分数与初始包围框偏移;将初始包围框偏移进行线性变换,得到角点感知卷积的采样网格,并依据该采样网格,对初始特征进行卷积,产生角点感知特征;依据角点感知特征,获取修正分数与修正包围框偏移;根据初始包围框偏移、修正包围框偏移及预定义参考点进行解码运算,获取修正包围框,从而得到多向场景文字检测结果。本发明利用多向场景文本的几何特性进行特征采样,通过角点感知的卷积模块,扩大了有效感受野且没有冗余信息引入,解决了密集长文本和高质量检测的问题,获取更优秀的性能。

    基于高斯约束注意力机制网络的场景文字识别方法及系统

    公开(公告)号:CN112070114A

    公开(公告)日:2020-12-11

    申请号:CN202010767079.6

    申请日:2020-08-03

    Abstract: 本发明提出一种基于高斯约束注意力机制网络的场景文字识别方法及系统,涉及图像信息识别领域,通过提取待识别图片的视觉特征,得到二维特征图;将二维特征图转化为一维特征序列,根据该一维特征序列提取全局语义信息;将全局语义信息输入至第一个时间步中初始化解码隐状态,并在每个时间步中根据隐状态和二维特征图计算原始的注意力权重,利用该权重加权求和得到原始加权特征向量;根据隐状态和原始加权特征向量构造二维高斯分布掩膜,将该掩膜与原始的注意力权重相乘,得到矫正的注意力权重,根据该权重得到矫正后加权特征向量;将原始加权特征向量和矫正后加权特征向量融合一起来预测待识别图片的字符,从而能够解决注意力弥散的情况。

    基于全卷积角点修正网络的多向场景文字检测方法及装置

    公开(公告)号:CN113095319A

    公开(公告)日:2021-07-09

    申请号:CN202110235490.3

    申请日:2021-03-03

    Abstract: 本发明公开了一种基于全卷积角点修正网络的多向场景文字检测方法及装置,包括:依据图片的视觉特征,获取融合特征;根据融合特征,分别得到初始特征、初始分数与初始包围框偏移;将初始包围框偏移进行线性变换,得到角点感知卷积的采样网格,并依据该采样网格,对初始特征进行卷积,产生角点感知特征;依据角点感知特征,获取修正分数与修正包围框偏移;根据初始包围框偏移、修正包围框偏移及预定义参考点进行解码运算,获取修正包围框,从而得到多向场景文字检测结果。本发明利用多向场景文本的几何特性进行特征采样,通过角点感知的卷积模块,扩大了有效感受野且没有冗余信息引入,解决了密集长文本和高质量检测的问题,获取更优秀的性能。

Patent Agency Ranking