一种个性化兴趣点推荐方法及系统

    公开(公告)号:CN111949877B

    公开(公告)日:2023-02-28

    申请号:CN202010816756.9

    申请日:2020-08-14

    Abstract: 本发明公开了一种个性化兴趣点推荐方法及系统。本方法包括:1)根据用户及兴趣点的历史签到信息,获取用户集合、兴趣点集合和每个用户兴趣点集合;2)将每个兴趣点信息进行编码得到兴趣点向量;3)根据兴趣点签到时间信息,编码得到对应用户的时间特征向量;4)根据兴趣点签到天气信息,编码得到对应用户的天气特征向量;5)根据兴趣点签到信息,编码得到对应用户是空间特征向量;6)根据用户的上述向量,得到对应用户兴趣点矩阵;7)根据用户兴趣点矩阵训练LSTM‑Autoencoder模型,对签到序列进行修正,得到用户兴趣点访问偏好;8)根据目标用户的兴趣点访问偏好,给定时间信息、天气信息,向目标用户进行兴趣点推荐。

    一种个性化兴趣点推荐方法及系统

    公开(公告)号:CN111949877A

    公开(公告)日:2020-11-17

    申请号:CN202010816756.9

    申请日:2020-08-14

    Abstract: 本发明公开了一种个性化兴趣点推荐方法及系统。本方法包括:1)根据用户及兴趣点的历史签到信息,获取用户集合、兴趣点集合和每个用户兴趣点集合;2)将每个兴趣点信息进行编码得到兴趣点向量;3)根据兴趣点签到时间信息,编码得到对应用户的时间特征向量;4)根据兴趣点签到天气信息,编码得到对应用户的天气特征向量;5)根据兴趣点签到信息,编码得到对应用户是空间特征向量;6)根据用户的上述向量,得到对应用户兴趣点矩阵;7)根据用户兴趣点矩阵训练LSTM-Autoencoder模型,对签到序列进行修正,得到用户兴趣点访问偏好;8)根据目标用户的兴趣点访问偏好,给定时间信息、天气信息,向目标用户进行兴趣点推荐。

Patent Agency Ranking