一种基于神经网络的车联网组合频谱感知方法及其应用

    公开(公告)号:CN111510232B

    公开(公告)日:2022-02-18

    申请号:CN202010276787.X

    申请日:2020-04-10

    Abstract: 本发明提供一种基于神经网络的车联网组合频谱感知方法,包括:获取其协方差矩阵,通过接收信号的能量值和协方差矩阵的特征值来提取特征参数;划分训练集、验证集和测试集;以所述特征参数作为输入参数,以主用户的存在情况作为输出参数,建立神经网络;采用训练集和验证集来对神经网络训练和验证,得到频谱感知神经网络,随后采用测试集来对频谱感知神经网络进行调节;接收新的接收信号,进行频谱感知,得到频谱感知结果。本发明还提供一种车联网。本发明的车联网组合频谱感知方法综合考虑信号能量值和协方差矩阵的特点,利用神经网络较强的多分类能力,从而在车联网环境下提高频谱感知成功率,有效提高车联网环境下频谱感知性能。

    一种基于神经网络的车联网组合频谱感知方法及其应用

    公开(公告)号:CN111510232A

    公开(公告)日:2020-08-07

    申请号:CN202010276787.X

    申请日:2020-04-10

    Abstract: 本发明提供一种基于神经网络的车联网组合频谱感知方法,包括:获取其协方差矩阵,通过接收信号的能量值和协方差矩阵的特征值来提取特征参数;划分训练集、验证集和测试集;以所述特征参数作为输入参数,以主用户的存在情况作为输出参数,建立神经网络;采用训练集和验证集来对神经网络训练和验证,得到频谱感知神经网络,随后采用测试集来对频谱感知神经网络进行调节;接收新的接收信号,进行频谱感知,得到频谱感知结果。本发明还提供一种车联网。本发明的车联网组合频谱感知方法综合考虑信号能量值和协方差矩阵的特点,利用神经网络较强的多分类能力,从而在车联网环境下提高频谱感知成功率,有效提高车联网环境下频谱感知性能。

Patent Agency Ranking