-
公开(公告)号:CN113780138B
公开(公告)日:2022-09-13
申请号:CN202111013939.8
申请日:2021-08-31
Applicant: 中国科学技术大学先进技术研究院
IPC: G06V20/40 , G06V10/25 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明的一种自适应鲁棒性VOCs气体泄漏检测方法、系统及存储介质,包括以下步骤,获取红外视频数据并进行预处理操作;从红外视频数据中提取一定长度像素点一维时序特征数据,训练一维卷积神经网络分类器;使用一维卷积神经网络分类器,输出值导入贝叶斯框架内的EVT算法,训练先验伽马分布的参数α0和β0;输入相关参数,通过自适应算法调整阈值,输出预测结果。本发明充分利用红外视频数据中VOCs气体区域像素点的时空特征使用卷积神经网络对红外视频图像进行预筛查,通过贝叶斯框架内的极值理论来优化调整筛查阈值,通过用指数分布逼近分数的概率密度函数的右尾部,并使用从训练数据中学习的伽马共轭先验,可以降低错误率的可变性并提高整体性能。
-
公开(公告)号:CN113850172A
公开(公告)日:2021-12-28
申请号:CN202111096477.0
申请日:2021-09-18
Applicant: 中国科学技术大学先进技术研究院
Abstract: 本发明的一种微尺度VOCs泄漏检测方法、系统、存储介质及设备,包括以下步骤:S10、获取VOCs泄漏区和无泄漏区的红外图像进行数据预处理;S20、将预处理数据输入骨干网络,采用不同大小的核函数进行特征学习;S30、使用粗分类模块过滤大量非VOCs泄漏气体背景区域,提取出疑似VOCs泄漏图像;S40、使用细分类模块对疑似VOCs泄漏图像进行分类,并对VOCs泄漏位置回归定位,进而得出检测结果。本发明充分利用卷积神经网络对VOCs泄漏红外图像特征学习,通过粗粒度到细粒度框架,粗分类器有效的过滤大量背景信息,减少了计算量,使用细分类器进行精准定位和识别分类,从而有效的节省计算资源并提高检测准确性。
-
公开(公告)号:CN113850172B
公开(公告)日:2025-04-29
申请号:CN202111096477.0
申请日:2021-09-18
Applicant: 中国科学技术大学先进技术研究院 , 中国科学技术大学
IPC: G06V10/25 , G06V10/82 , G06V10/764 , G06V10/766 , G06V20/52 , G06V10/44 , G06V10/80 , G06N3/0464 , G06N3/048
Abstract: 本发明的一种微尺度VOCs泄漏检测方法、系统、存储介质及设备,包括以下步骤:S10、获取VOCs泄漏区和无泄漏区的红外图像进行数据预处理;S20、将预处理数据输入骨干网络,采用不同大小的核函数进行特征学习;S30、使用粗分类模块过滤大量非VOCs泄漏气体背景区域,提取出疑似VOCs泄漏图像;S40、使用细分类模块对疑似VOCs泄漏图像进行分类,并对VOCs泄漏位置回归定位,进而得出检测结果。本发明充分利用卷积神经网络对VOCs泄漏红外图像特征学习,通过粗粒度到细粒度框架,粗分类器有效的过滤大量背景信息,减少了计算量,使用细分类器进行精准定位和识别分类,从而有效的节省计算资源并提高检测准确性。
-
公开(公告)号:CN113780136A
公开(公告)日:2021-12-10
申请号:CN202111013478.4
申请日:2021-08-31
Applicant: 中国科学技术大学先进技术研究院
Abstract: 本发明的一种基于时空纹理识别的VOCs气体泄漏检测方法、系统及设备,包括以下步骤,S1:获取红外视频数据并对进行数据预处理;S2:从红外视频数据中提取一维时序特征数据,训练一维卷积神经网络分类器;S3:从红外视频数据中提取多帧存在VOCs泄漏的连续视频帧,使用视频帧训练二维加型时空神经网络分类器;S4:采样若干像素点的时空特征,使用一维卷积神经网络分类器,计算出平均泄漏置信度;当超过预设阈值时,将相关视频帧输入二维加型时空神经网络分类器,并输出预测结果。本发明充分利用时空纹理特征使用卷积神经网络对红外视频图像进行预筛查,随后再使用加型时空神经网络模型进行复检,从而在实现VOCs泄漏快速检测的同时显著降低计算性能需求。
-
公开(公告)号:CN113780136B
公开(公告)日:2023-07-14
申请号:CN202111013478.4
申请日:2021-08-31
Applicant: 中国科学技术大学先进技术研究院
IPC: G06V20/40 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明的一种基于时空纹理识别的VOCs气体泄漏检测方法、系统及设备,包括以下步骤,S1:获取红外视频数据并对进行数据预处理;S2:从红外视频数据中提取一维时序特征数据,训练一维卷积神经网络分类器;S3:从红外视频数据中提取多帧存在VOCs泄漏的连续视频帧,使用视频帧训练二维加型时空神经网络分类器;S4:采样若干像素点的时空特征,使用一维卷积神经网络分类器,计算出平均泄漏置信度;当超过预设阈值时,将相关视频帧输入二维加型时空神经网络分类器,并输出预测结果。本发明充分利用时空纹理特征使用卷积神经网络对红外视频图像进行预筛查,随后再使用加型时空神经网络模型进行复检,从而在实现VOCs泄漏快速检测的同时显著降低计算性能需求。
-
公开(公告)号:CN113780135A
公开(公告)日:2021-12-10
申请号:CN202111012923.5
申请日:2021-08-31
Applicant: 中国科学技术大学先进技术研究院
Abstract: 本发明的一种跨场景的VOCs气体泄漏检测方法、系统及存储介质,包括以下步骤,获取存在VOCs泄漏和无泄漏的红外视频数据并对其进行数据预处理;采用GMM去除红外视频静态背景,提取出红外图像中疑似VOCs泄漏区域;对目标检测模型Faster RCNN神经网络模型进行预训练;通过已训练好的Faster RCNN神经网络模型,构造迁移学习中的源域特征数据集和目标域特征数据集;运用域自适应的迁移学习方法对GMM提取出的红外疑似VOCs泄漏区域进行识别。本发明能够克服现有方法的不足,充分利用红外视频中VOCs气体区域的领域知识对视频帧中的可疑烟雾区域分割,随后再使用Faster RCNN神经网络模型,运用迁移学习的方式对VOCs泄漏区域进行检测识别,从而降低计算性能需求和标记所带来的时间耗费。
-
公开(公告)号:CN113780135B
公开(公告)日:2023-08-04
申请号:CN202111012923.5
申请日:2021-08-31
Applicant: 中国科学技术大学先进技术研究院
IPC: G06V20/52 , G06V10/25 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明的一种跨场景的VOCs气体泄漏检测方法、系统及存储介质,包括以下步骤,获取存在VOCs泄漏和无泄漏的红外视频数据并对其进行数据预处理;采用GMM去除红外视频静态背景,提取出红外图像中疑似VOCs泄漏区域;对目标检测模型Faster RCNN神经网络模型进行预训练;通过已训练好的Faster RCNN神经网络模型,构造迁移学习中的源域特征数据集和目标域特征数据集;运用域自适应的迁移学习方法对GMM提取出的红外疑似VOCs泄漏区域进行识别。本发明能够克服现有方法的不足,充分利用红外视频中VOCs气体区域的领域知识对视频帧中的可疑烟雾区域分割,随后再使用Faster RCNN神经网络模型,运用迁移学习的方式对VOCs泄漏区域进行检测识别,从而降低计算性能需求和标记所带来的时间耗费。
-
公开(公告)号:CN113780138A
公开(公告)日:2021-12-10
申请号:CN202111013939.8
申请日:2021-08-31
Applicant: 中国科学技术大学先进技术研究院
Abstract: 本发明的一种自适应鲁棒性VOCs气体泄漏检测方法、系统及存储介质,包括以下步骤,获取红外视频数据并进行预处理操作;从红外视频数据中提取一定长度像素点一维时序特征数据,训练一维卷积神经网络分类器;使用一维卷积神经网络分类器,输出值导入贝叶斯框架内的EVT算法,训练先验伽马分布α0和β0的参数;输入相关参数,通过自适应算法调整阈值,输出预测结果。本发明充分利用红外图像中VOCs气体区域像素点的时空特征使用卷积神经网络对红外视频图像进行预筛查,通过贝叶斯框架内的极值理论来优化调整筛查阈值,通过用指数分布逼近分数的概率密度函数的左尾部,并使用从训练数据中学习的伽马共轭先验,可以降低错误率的可变性并提高整体性能。
-
-
-
-
-
-
-