-
公开(公告)号:CN109672885B
公开(公告)日:2020-08-04
申请号:CN201910014069.2
申请日:2019-01-08
Applicant: 中国矿业大学(北京)
IPC: H04N19/132 , H04N19/42 , H04N19/44 , H04N7/18
Abstract: 本发明公开了一种用于矿井智能监控的视频图像编解码方法,该方法采用基于机器视觉的卷积神经网络算法,实现对矿井视频图像的编码和解码功能,包含以下步骤:(1)利用矿井视频图像采集设备采集图像,据此制作训练集和测试集;(2)构建矿井视频图像的编码器网络和解码器网络:编码器网络包括降采样层,解码器网络包括升采样层、二分支卷积层、标准化层、非线性激活层和深度变换层;(3)训练网络;(4)用训练好的网络完成矿井视频图像的编码和解码。该方法解决了矿井视频监控系统的编解码和信号重建时间过长的问题,提高了矿井智能视频监控系统的性能。
-
公开(公告)号:CN109672885A
公开(公告)日:2019-04-23
申请号:CN201910014069.2
申请日:2019-01-08
Applicant: 中国矿业大学(北京)
IPC: H04N19/132 , H04N19/42 , H04N19/44 , H04N7/18
Abstract: 本发明公开了一种用于矿井智能监控的视频图像编解码方法,该方法采用基于机器视觉的卷积神经网络算法,实现对矿井视频图像的编码和解码功能,包含以下步骤:(1)利用矿井视频图像采集设备采集图像,据此制作训练集和测试集;(2)构建矿井视频图像的编码器网络和解码器网络:编码器网络包括降采样层,解码器网络包括升采样层、二分支卷积层、标准化层、非线性激活层和深度变换层;(3)训练网络;(4)用训练好的网络完成矿井视频图像的编码和解码。该方法解决了矿井视频监控系统的编解码和信号重建时间过长的问题,提高了矿井智能视频监控系统的性能。
-