一种基于深度学习的轻量化恶意流量分类方法

    公开(公告)号:CN117336057B

    公开(公告)日:2024-07-05

    申请号:CN202311300181.5

    申请日:2023-10-10

    Abstract: 本发明公开了一种基于深度学习的轻量化恶意流量分类方法。轻量化恶意流量分类方法将表征流量数据的灰度图像通过设计好的轻量化恶意流量分类模型进行分类,得到是良性流量还是恶性流量的输出结果。轻量化恶意流量分类模型包括1个卷积层、8个LRB模块、1个全局平均池化层、1个全连接层和1个分类器。灰度图像首先经过所述卷积层,再经过顺序连接的8个LRB模块,之后依次输入全局平均池化层、全连接层和分类器。本发明利用改进后的残差块(LRB)构建的模型,拥有较低的参数和计算量,和较高的推理速度,以及与模型相当的准确率,可以部署在资源受限的物联网设备上,实时并且准确的检测物联网中的恶意流量。

    基于协同训练的多视图加密恶意流量检测方法

    公开(公告)号:CN116055201B

    公开(公告)日:2023-09-01

    申请号:CN202310069213.9

    申请日:2023-01-16

    Abstract: 本发明公开了基于协同训练的多视图加密恶意流量检测模型,属于数据识别中的加密恶意流量检测领域,包括:利用Wireshark工具捕获原始pcap流量包;采用Zeek工具解析原始pcap流量包,得到流特征、连接特征和TLS证书特征;将流特征与连接特征融合并进行标准化,经特征重要性评估后构建视图1;对TLS证书特征采用词频‑逆文本频率指数方法进行编码,采用主成分分析法降维后构建视图2,进而构建对视图样本集;将多视图样本集分为训练集和测试集;协同XGBoost分类器和随机森林分类器构造检测模型;利用训练集训练检测模型;利用测试集检验检测模型性能;采用协同训练的方式结合网络流量不同类别的特征进行加密恶意流量检测,具有较强的检测能力。

    基于协同训练的多视图加密恶意流量检测方法

    公开(公告)号:CN116055201A

    公开(公告)日:2023-05-02

    申请号:CN202310069213.9

    申请日:2023-01-16

    Abstract: 本发明公开了基于协同训练的多视图加密恶意流量检测模型,属于数据识别中的加密恶意流量检测领域,包括:利用Wireshark工具捕获原始pcap流量包;采用Zeek工具解析原始pcap流量包,得到流特征、连接特征和TLS证书特征;将流特征与连接特征融合并进行标准化,经特征重要性评估后构建视图1;对TLS证书特征采用词频‑逆文本频率指数方法进行编码,采用主成分分析法降维后构建视图2,进而构建对视图样本集;将多视图样本集分为训练集和测试集;协同XGBoost分类器和随机森林分类器构造检测模型;利用训练集训练检测模型;利用测试集检验检测模型性能;采用协同训练的方式结合网络流量不同类别的特征进行加密恶意流量检测,具有较强的检测能力。

    一种基于深度学习的轻量化恶意流量分类方法

    公开(公告)号:CN117336057A

    公开(公告)日:2024-01-02

    申请号:CN202311300181.5

    申请日:2023-10-10

    Abstract: 本发明公开了一种基于深度学习的轻量化恶意流量分类方法。轻量化恶意流量分类方法将表征流量数据的灰度图像通过设计好的轻量化恶意流量分类模型进行分类,得到是良性流量还是恶性流量的输出结果。轻量化恶意流量分类模型包括1个卷积层、8个LRB模块、1个全局平均池化层、1个全连接层和1个分类器。灰度图像首先经过所述卷积层,再经过顺序连接的8个LRB模块,之后依次输入全局平均池化层、全连接层和分类器。本发明利用改进后的残差块(LRB)构建的模型,拥有较低的参数和计算量,和较高的推理速度,以及与模型相当的准确率,可以部署在资源受限的物联网设备上,实时并且准确的检测物联网中的恶意流量。

Patent Agency Ranking