一种标签噪声鲁棒的微震到时智能拾取模型构建方法

    公开(公告)号:CN118296386A

    公开(公告)日:2024-07-05

    申请号:CN202410561163.0

    申请日:2024-05-08

    Abstract: 一种标签噪声鲁棒的微震到时智能拾取模型构建方法,通过设计新颖的LNRL训练架构模型,可以同时学习输入地震图像和输出标签的表示,从而捕获样本之间的特征表示分布关系。模型利用变分推断的常用方法来控制特征表示的分布,通过KL散度来优化特征表示分布和标签表示分布之间的关系。此外,LNRL还引入了随机傅里叶特征来在多个随机空间中对齐表示分布。本发明能够解决深度地下工程中微地震到达时刻拾取的标签噪声问题,克服现有微震数据中,来自工程师的人为标记误差和实际工程环境中恶劣条件下的设备噪声,为微震到达时间拾取提供了一个稳健的解决方案,对于地下工程和灾害监测等地球物理应用至关重要,并在未来的工作中具有更广泛的微震任务探索潜力。

Patent Agency Ranking