一种面向黑盒测试背景下的回归测试用例分类方法

    公开(公告)号:CN108197028B

    公开(公告)日:2020-12-01

    申请号:CN201810010235.7

    申请日:2018-01-05

    Abstract: 本发明提供了一种面向黑盒测试背景下的回归测试用例分类方法,包括下列步骤:1)预处理测试用例对应的文本信息;2)采用LDA(Latent Dirichlet Allocation)话题模型技术对预处理后的文本进行主题建模,将其表示成文本特征数目固定的主题特征向量;3)随机选取部分测试用例为其构造测试预言,并在演化后的软件版本上运行,根据运行结果标注其类别;4)基于主题特征向量及测试用例的类别信息训练SVM分类器;5)将待分类的测试用例对应的主题特征向量作为分类器的输入,输出测试用例的类别。本发明解决了被测软件源代码不可见情形下的软件回归测试验证问题,提高了软件测试的自动化程度及软件测试效率。

    一种面向黑盒测试背景下的回归测试用例分类方法

    公开(公告)号:CN108197028A

    公开(公告)日:2018-06-22

    申请号:CN201810010235.7

    申请日:2018-01-05

    CPC classification number: G06F11/3684

    Abstract: 本发明提供了一种面向黑盒测试背景下的回归测试用例分类方法,包括下列步骤:1)预处理测试用例对应的文本信息;2)采用LDA(Latent Dirichlet Allocation)话题模型技术对预处理后的文本进行主题建模,将其表示成文本特征数目固定的主题特征向量;3)随机选取部分测试用例为其构造测试预言,并在演化后的软件版本上运行,根据运行结果标注其类别;4)基于主题特征向量及测试用例的类别信息训练SVM分类器;5)将待分类的测试用例对应的主题特征向量作为分类器的输入,输出测试用例的类别。本发明解决了被测软件源代码不可见情形下的软件回归测试验证问题,提高了软件测试的自动化程度及软件测试效率。

Patent Agency Ranking