-
公开(公告)号:CN107180434A
公开(公告)日:2017-09-19
申请号:CN201710411372.7
申请日:2017-05-23
Applicant: 中国地质大学(武汉)
Abstract: 本发明公开了基于超像素和分形网络演化算法的极化合成孔径雷达(SAR)图像分割方法,对于待分割的极化SAR图像,生成超像素作为初始对象;计算初始对象中相邻对象之间的相似性准则;统计每个对象与相邻对象之间相似性准则的最小值,若最小值小于或等于尺度参数,则合并两相邻对象生成新的对象,若最小值大于尺度参数,则不合并,遍历所有对象,完成一次分割,生成新的对象层;生成对象多边形,得到最终的分割结果。本发明为统计模型参数的估算提供了足够的像素,避免分割边界的锯齿状现象;基于分形网络演化算法的思想综合了统计特征和形状特征,使分割对象更加一致,边界光滑,提高极化SAR图像分割准确性。
-
公开(公告)号:CN107180434B
公开(公告)日:2019-10-18
申请号:CN201710411372.7
申请日:2017-05-23
Applicant: 中国地质大学(武汉)
Abstract: 本发明公开了基于超像素和分形网络演化算法的极化合成孔径雷达(SAR)图像分割方法,对于待分割的极化SAR图像,生成超像素作为初始对象;计算初始对象中相邻对象之间的相似性准则;统计每个对象与相邻对象之间相似性准则的最小值,若最小值小于或等于尺度参数,则合并两相邻对象生成新的对象,若最小值大于尺度参数,则不合并,遍历所有对象,完成一次分割,生成新的对象层;生成对象多边形,得到最终的分割结果。本发明为统计模型参数的估算提供了足够的像素,避免分割边界的锯齿状现象;基于分形网络演化算法的思想综合了统计特征和形状特征,使分割对象更加一致,边界光滑,提高极化SAR图像分割准确性。
-