-
公开(公告)号:CN116524369B
公开(公告)日:2023-11-17
申请号:CN202310414490.9
申请日:2023-04-18
Applicant: 中国地质大学(武汉)
IPC: G06V20/13 , G06V20/10 , G06V10/774 , G06V10/26 , G06V10/82 , G06V10/776 , G06V10/764 , G06N3/042 , G06N3/0464
Abstract: 本发明提供了遥感影像分割模型构建方法、装置及遥感影像解译方法,涉及图像处理领域,遥感影像分割模型构建方法包括:获取原始多光谱影像,并对原始多光谱影像进行超像素分割,以得到超像素分割结果;对所述超像素分割结果进行特征提取,以得到初始超像素特征和初始超像素标签;获取类别共现矩阵;根据超像素分割结果构建拓扑图,并将类别共现矩阵融合到拓扑图中以得到初始拓扑图;根据超像素分割结果构建初始特征图,并根据初始特征图、初始超像素特征、初始拓扑图和初始超像素标签对原始分割模型进行训练及调优得到遥感影像分割模型。解决了在利用多光谱遥感图像对土地覆盖进行分类时因忽略不同局部区域的长程空间关系,导致边界信息丢失问题。
-
公开(公告)号:CN117765297B
公开(公告)日:2024-06-07
申请号:CN202311558732.8
申请日:2023-11-20
Applicant: 中国地质大学(武汉)
IPC: G06V10/764 , G06V20/10
Abstract: 本发明涉及图像处理技术领域,具体而言,提供了一种高光谱图像分类方法、装置、设备及存储介质,高光谱图像分类方法包括:获取高光谱数据集,对高光谱数据集进行动态切片构建光谱立方体;将光谱立方体进行分离投影和特征变换,得到光谱特征矩阵和空间特征矩阵;对光谱特征矩阵进行绝对位置编码,对空间特征矩阵进行相对位置编码;将光谱特征矩阵和空间特征矩阵分别输入两个独立的训练好的Transformer学习器,得到光谱特征注意力矩阵和空间特征注意力矩阵;将光谱特征注意力矩阵和空间特征注意力矩阵融合后进行分类,得到分类结果。本发明的技术方案通过对高光谱图像在光谱维度和空间维度的特征信息进行提取处理,有效提升高光谱图像分类结果的分类精度。
-
公开(公告)号:CN117765297A
公开(公告)日:2024-03-26
申请号:CN202311558732.8
申请日:2023-11-20
Applicant: 中国地质大学(武汉)
IPC: G06V10/764 , G06V20/10
Abstract: 本发明涉及图像处理技术领域,具体而言,提供了一种高光谱图像分类方法、装置、设备及存储介质,高光谱图像分类方法包括:获取高光谱数据集,对高光谱数据集进行动态切片构建光谱立方体;将光谱立方体进行分离投影和特征变换,得到光谱特征矩阵和空间特征矩阵;对光谱特征矩阵进行绝对位置编码,对空间特征矩阵进行相对位置编码;将光谱特征矩阵和空间特征矩阵分别输入两个独立的训练好的Transformer学习器,得到光谱特征注意力矩阵和空间特征注意力矩阵;将光谱特征注意力矩阵和空间特征注意力矩阵融合后进行分类,得到分类结果。本发明的技术方案通过对高光谱图像在光谱维度和空间维度的特征信息进行提取处理,有效提升高光谱图像分类结果的分类精度。
-
公开(公告)号:CN116524369A
公开(公告)日:2023-08-01
申请号:CN202310414490.9
申请日:2023-04-18
Applicant: 中国地质大学(武汉)
IPC: G06V20/13 , G06V20/10 , G06V10/774 , G06V10/26 , G06V10/82 , G06V10/776 , G06V10/764 , G06N3/042 , G06N3/0464
Abstract: 本发明提供了遥感影像分割模型构建方法、装置及遥感影像解译方法,涉及图像处理领域,遥感影像分割模型构建方法包括:获取原始多光谱影像,并对原始多光谱影像进行超像素分割,以得到超像素分割结果;对所述超像素分割结果进行特征提取,以得到初始超像素特征和初始超像素标签;获取类别共现矩阵;根据超像素分割结果构建拓扑图,并将类别共现矩阵融合到拓扑图中以得到初始拓扑图;根据超像素分割结果构建初始特征图,并根据初始特征图、初始超像素特征、初始拓扑图和初始超像素标签对原始分割模型进行训练及调优得到遥感影像分割模型。解决了在利用多光谱遥感图像对土地覆盖进行分类时因忽略不同局部区域的长程空间关系,导致边界信息丢失问题。
-
-
-