一种天气波动过程划分与匹配的短期风电功率预测方法

    公开(公告)号:CN112200346A

    公开(公告)日:2021-01-08

    申请号:CN202010928043.1

    申请日:2020-09-07

    摘要: 本发明涉及一种天气波动过程划分与匹配的短期风电功率预测方法,首先,构建用于天气波动过程划分的历史数据集、当前数据集;其次,构建历史组合天气波动特征矩阵并作为聚类对象;然后,构建当前天气波动特征矩阵;再后,计算当前天气波动过程与各历史天气波动过程聚合的隶属度,确定最佳匹配的历史天气波动过程聚合;最后,基于人工智能预测算法预测当前天气波动过程下的风电功率;得到当前循环天的从次日零时起3天的风电功率。本发明,实现了天气波动过程的精细化划分,实现了多维波动特征参数提取与天气波动特征矩阵构建,实现了为短期风电功率预测提供了更加准确的训练样本,获得较为精确的从次日零时起3天的短期风电功率预测值。

    一种稀疏约束和动态权重分配的风电集群功率预测方法

    公开(公告)号:CN112990533B

    公开(公告)日:2024-01-05

    申请号:CN202110068084.2

    申请日:2021-01-19

    IPC分类号: H02J3/00 G06Q50/06 H02J3/38

    摘要: 本发明涉及一种稀疏约束和动态权重分配的风电集群功率预测方法,具体的步骤为:包括集群内各个风电场间功率空间相关性分析、集群内各个风电场空间相关风电场的确定,用于风电集群功率预测的集群参考风电场确定、风电集群功率预测模型的建立、功率预测误差的校正,为了克服风电集群功率预测精度低、效率低的弊端,本发明的目的在于提供一种稀疏约束和动态权重分配的风电集群功率预测方法,可显著减小风电集群功率的预测误差、提升风电集群功率预测的效率。

    一种稀疏约束和动态权重分配的风电集群功率预测方法

    公开(公告)号:CN112990533A

    公开(公告)日:2021-06-18

    申请号:CN202110068084.2

    申请日:2021-01-19

    IPC分类号: G06Q10/04 G06Q50/06

    摘要: 本发明涉及一种稀疏约束和动态权重分配的风电集群功率预测方法,具体的步骤为:包括集群内各个风电场间功率空间相关性分析、集群内各个风电场空间相关风电场的确定,用于风电集群功率预测的集群参考风电场确定、风电集群功率预测模型的建立、功率预测误差的校正,为了克服风电集群功率预测精度低、效率低的弊端,本发明的目的在于提供一种稀疏约束和动态权重分配的风电集群功率预测方法,可显著减小风电集群功率的预测误差、提升风电集群功率预测的效率。

    一种天气波动过程划分与匹配的短期风电功率预测方法

    公开(公告)号:CN112200346B

    公开(公告)日:2024-03-26

    申请号:CN202010928043.1

    申请日:2020-09-07

    摘要: 本发明涉及一种天气波动过程划分与匹配的短期风电功率预测方法,首先,构建用于天气波动过程划分的历史数据集、当前数据集;其次,构建历史组合天气波动特征矩阵并作为聚类对象;然后,构建当前天气波动特征矩阵;再后,计算当前天气波动过程与各历史天气波动过程聚合的隶属度,确定最佳匹配的历史天气波动过程聚合;最后,基于人工智能预测算法预测当前天气波动过程下的风电功率;得到当前循环天的从次日零时起3天的风电功率。本发明,实现了天气波动过程的精细化划分,实现了多维波动特征参数提取与天气波动特征矩阵构建,实现了为短期风电功率预测提供了更加准确的训练样本,获得较为精确的从次日零时起3天的短期风电功率预测值。